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Aharonov—Bohm Effect, Flat Connections,
and Green’s Theorem
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The validity of Green’s theorem, and hence of Stokes’ theorem, when the involved
vector field is differentiable but not continuously differentiable, is crucial for a theo-
retical explanation of the Aharonov—Bohm (A-B) effect; we review this theorem. We
describe the principal bundle in which the A-B effect occurs, and give the geometrical
description of the relevant connection. We study the set of gauge equivalence classes of
flat connections on a product bundle with abelian structural group, and show that this
set has a canonical group structure, which is isomorphic to a quotient of cohnomology
groups. We apply this result to the A-B bundle and calculate the holonomy groups of
all flat connections.
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1. INTRODUCTION

The Aharonov—-Bohm (A-B) effect (Aharonov and Bohm, 1959) is one of the
simplest and at the same time most important examples of the interplay among
classical gauge theory, quantum mechanics, differential geometry, and topology.
This can be easily understood from the fact that the A-B effect is the result of
the action of a nontrivial flat connection (a magnetic potential) on a section (the
wave function of the electron) in a principal (product) bundle over a nonsimply
connected region (ordinary Euclidean space minus a tube). Green’s theorem in the
plane, or its three-dimensional version, the Stokes’ theorem, play a crucial role
in its theoretical explanation, relating the paths followed by the charged particles
in the free field region to the flux of the magnetic field in regions not accesible
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to the particles. The usual conditions under which the Stokes’ theorem is proved,
however, are not all fulfilled by the physical system, since in the standard proof
of the theorem it is assumed that the vector field, in this case the vector potential,
has continuous first-order partial derivatives, while in the physical system these
derivatives exist everywhere, but have a finite discontinuity at the surface of the
solenoid.

There are several proofs of the generalization of Green’s theorem, and there-
fore also of Stokes’ theorem, under different assumptions. The most appropiate for
our purposes is that of Craven (1964). For completeness, and for the benefit of the
reader, in Section 2 we present a simplified proof of the theorem, adequate to our
purposes. (In the book of Arfken and Weber, 2001, the validity of Stokes’ theorem
under these more general conditions is mentioned, but not explicitly proved.)

In Section 3 we review some geometrical aspects related to the A-B effect.
A symmetry argument allows to neglect the longitudinal dimension along the
solenoid, and then we show that the principal bundle where the effect occurs is the
productU (1)-bundleU (1) — R?* x U(1) — R?*, whereR? = R? — {0} is the
plane minus a point (or the plane minus a disk).

Section 4 is a long section devoted to the study of the general theory of con-
nections on a product bundle, and in particular of the subspace of flat connections
in the case of a connected abelian structural g@u@ur main result (Theorem 2)
is that the moduli space of gauge equivalence classes of flat connections on the
bundleM x G — M isisomorphic tdHz(M;g)/[M, G], which is the quotient of
the first De Rham cohomology group lgf with coefficients in the Lie algebgof
G, modulo the group of smooth homotopy classes of maps vbta G. In partic-
ular, this shows that the A-B effect is caused by the nontrivial topology of the base
spaceM, because even® = R, then we still have flat connections which are not
gauge equivalent to the canonical one. For the @seU (1) andM = R? — {0}
we show, in Theorem 3, that the moduli space is isomorph!to

In Section 5 we calculate the holonomy group of each equivalence class of
flat connections oM x U (1) - M, whereM = R? — {0}. By the isomorphism
mentioned above, we can associate to the gauge class of a flat connection an
element inS'. Then the holonomy group of the connection is the subgroug} of
generated by this element (Theorem 4). These subgroups are either finite cyclic
groups or an infinite cyclic group which is densegh This means the following:
take a circle with center at the origin IR?; then there are potentials such that
if we go around this circlen times, then its holonomy is zero. And there are
potentials such that we can get as close as we want to any given value of the
holonomy phase, provided we go around the circle a sufficiently large number of
times.

In Section 6 we particularize the results of Section 4 to the A-B connection.

Finally, we comment about the appearance of the A-B field (6.1) in vortex
solutions to the abelian Higgs model.
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2. GENERALIZED GREEN'S AND STOKES’' THEOREMS

In this section we prove Green'’s theorem in the plane under the less restrictive
condition of not requiring the continuity of the first-order partial derivatives of the
vector field. In so doing, we follow the proof of the Cauchy Integral Theorem by
Goursat (Churchill and Brown, 1984) in the context of complex variables.

Theorem 1. LetA = (Ax, Ay) be a differentiable but not necessarily continu-
ously differentiable vector field iR?, and R a closed region in the plane with
boundary c, a positively oriented simple piecewise smooth closed curve. If the
Riemann integral of the difference of the partial derivativgs,A- Ay,y exists on

R, then this integral equals the line integral Afalong c. In particular, the integral
exists if the set of points of discontinuity of the integrand has area zero.

Proof: Let Ay andA, be the Cartesian components of a differentiable vector field
AinRZ% by assumption all partial derivativegAy = Ay x, etc., exist, but these are
not necessarily continuous functions of their argumentsA_be a closed region
in thexy-plane with boundargR = c, a positively oriented non-self-intersecting
(simple) piecewise smooth closed curve. By a lemma of Goursat (Churchill and
Brown, 1984), whichmutatis mutandisan be transferred from the context of com-
plex analytic functions to the present case of real-valued differentiable functions,
since it only involves the definition of the derivative, for any 0 there exists a
finite subdivision ofR in closed squares and partial squares (squares with the por-
tion outsideR removed)R,, @ = 1, 2,.. ., n, with positively oriented boundaries
C., and point, € R, for eacha, such that for alk # X, in R,, the quantities

Ax — A

5_><,y = ﬁ - Ax y (2.1)

and a similar definition foﬁ_y,x, satisfy
|3_x,y|1 |5_y,x| <e&, (2.2)

where &, ¥) = Xa, (X, ¥) = %, Ax = Ac(X, y), Ac = Ax(X, ), andAy y = 2 %,
ForX = Xq, (SX y = 3yx = 0, and so¥x,y andsy x are continuous functlons of,
ie., limg_z, Sx y = limg_z, (Syx = 0. From (2.1),

Ax = Ax + Ax,y(y - )_/) + 5x,y(y - 3_/)
Ay = Ey + A_\y,X(X - )z) + (S_y,X(X - )z)

and then
Acdx + Aydyz A_\X dx + Kydy+ A_‘X,y(y_ )_/)dX+ A_\y’X(X _ )?)dy
+ 8y (Y — )_/)dX+8_y,x(X —X)dy;
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since
/ (Axdx+ A, dy) =0
Co
we obtain

/(Axdx+ Aydy)=/ A‘X,y(y—@dx+/ Ayx(x — ) dy
Co Cy Cy

+f a‘x,y(y—yvdx+/ ye(x — R ly.
Co Co

(Whenc, coincides with the boundanyof R, each integral ovet, is a sum of
integrals over its smooth components.) Since the internal integrals over elementary
contours cancel to each other, the sum over the partition for the left-hand side gives
the integral around, the boundary ofR:

n

>

a=1"YC

(Acdx + Ay dy) = ?g(Axolir A, dy).
C

Then

Piacax+ Ay - Zl (Kx,yf%(y— ) dx + Ky,x/%(x - i)dy)

Zn:(/cu‘s_x,y(y—)_/)dx+/ca5_y,x(x—)7)dy>‘

a=1
3 " \ | 6_y,x(x—i)dy')

-3 (
< X: (/C 1.y (Y = V)| dX+/Ca 18yx(X — X)| dy)

&,y(y_%dx
— Cu

< —vy|d —Xx|dy); 2.3
_e(;</%|y yl X+/cc,|x X| y) (2.3)

since at each square or partial squayer- y|, |x — X] < +/2s,, wheres, is the
length of the sides of theth squares, for the integrals at the extreme right of (2.3)
we havef, |y — yldx < V2% [ dx < 2V2¢, [, Ix —X|dy < V25, [, dy <
Zfsn and therefore this rlght -hand side is smaller than or equald_s4
S, §? < 4J2: A, where A is the area of a rectangle which contasSince
this happens for at > 0 ande — 0 asn — oo, in this limit the extreme left side
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(x-Ax,y+Ay) (x,y+Ay)
Y Ay
A y
I
|
1
i
(x-Ax,y) X Ax (x.y)
Fig. 1.

of (2.3) equals zero. On the other hand, on each square o$side

f(y—V)dx=[(y—yvdx+f<y+(Ay)a—y3dx
Co — <~
= (y - )_/)(Ax)a + (y + (Ay)a - y)(_AX)a = _(Ax)a(Ay)m
—Xx)dy = —x)dy+ — X —(AX)y)d
L(x %) dy /¢(X %) dy /l(x % — (X)) dy

= (X - X)(Ay)a + (X - X~ (Ax)a)(_Ay)ot = (Ax)a(Ay)ou

where AX), = (Ay), = & (see Fig. 1); and since in the limit as— oo the inte-
grals over partial squares can be approximated, with vanishing error, by integrals
over squares, we have

Fncdx Ady) = fm Y (A= A (@A)
c a=1

which is the definition of the Riemann integral &f x — Ay,y OnR. So, assuming
its existence, we obtain the Green'’s theorem on the plane for the funéjoesusd
Ay

it ady) = [ [ (A Ay dxay (2.4)
c R

QED
Similar Green’s formulae in the plangsz and zx can be obtained for a

differentiable bunhot necessarily continuously differentialvector fieldA in R,
From them, and through the standard procedure (Apostol, 1962; §ab®dll),



844 Aguilar and Socolovsky

the Stokes’ theorem for the fieldl can be proved:

f,&dﬁ://E(Vx,&)ﬂdE (2.5)

where T is a simple orientable piecewise smooth surfac&inwith unit nor-

mal vectorfi, which can be parametrized, at each smooth piece, by continuously
differentiable functions = x(u, v), y = y(u, v), andz = z(u, v) in theuv-plane,
andy, the boundary o, is a positively oriented simple piecewise smooth closed
curve.

3. FIBER BUNDLE INTERPRETATION

The simplest explanation of the A-B effect considers a solenoid of rdlius
with a uniform and nonvanishing magnetic fiddn its interior, and no magnetic
field outside, placed behind a screen with a double slit. A soBemits electrons
which after passing the slits interfegetantum mechanicallgt various points$
of a detecting screen (see Fig. 2). The magnetic field being the rotor of the vector
potential, clearly shows that this last quantity has a finite discontinuity in at least
one of its first partial derivatives at the surface of the solenoid.

If ¥s.p is the amplitude for an electron emitted &to be detected &P,
thenys . p = Y1 + Y2, Whereyy, k = 1, 2, the amplitude for the detgction when
the electron follows the patyy in the presence of the vector potentiatreating
the magnetic field inside the solenoid, is given by

Vi = Yo e i A,
whereyg is the amplitude in the absence of the magnetic field,caad—|e| is
the charge of the electron. The probability of detection is proportional to

Wspl? = Y1+ Yol? = [0l + [Yaol? + 2RV giraoe e JeAd),

Fig. 2.
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wherec is the loopy, U (—y41); by the Stokes’ theorem, the interference termis

2R9(1/7101/f20 e “’%)

where® is the magnetic flux inside the solenoid, abgl = %f is the fundamental
unit of magnetic flux associated with the electrabyg (s precisely the magnetic flux
of the elementary Dirac monopole (Dirac, 1931) associated with the electron: for

a magnetic chargg = 2€| , the magnetic field i8y(r) = 2|e\r2’ with flux through
any closed surface surroundimggiven by ®; = [ BydS= 2|2‘$247rr2 ‘hef

If ® =ndgy with n € Z, then there is no phase shift of the wave function of
magnetic origin, i.e. no A-B effect. It is interesting to remark that at each point
P of the detecting screen, the wave function is single valued; however, in general
Y1 # Yo (evemyrig # Y¥p0), and so it is the superposition principle which leads to
the uniqueness of the wave function.

Clearly, the system has symmetry along the axis of the solenoid, and so the
available space for the electrons, the base spaaethe fiber bundle formalism,
is the plane minus a disk of radit® which is topologically equivalent t&?,
the plane minus a point. The classification of principal bundles over a given space
does not depend on the space itself, but only on its homotopy type, which for the
present case is that of the circl’,. On the other hand, the structure graBpof
the bundle idJ (1), the gauge group of electromagnetism, which topologically is
again the circle. So, according to the well-known theorem for the classification of
G-bundles over spheres (Steenrod, 1951),

{isomorphism classes of {homotopy classes of

1
U(1)-bundles oveB!} < mapsS® — St} < Mo(S)

= {path connected components of the cifcle {x}. (3.1)

Then, up to equivalence, there is only dél)-bundle overS*: the product
one, that is, the toru$? = S* x U(1). (If the structure group wer®(2) instead
of U(1) = SO(2), then there should be an additional bundle, nontrivial and non-
orientable: the Klein bottl& 2.)

The same conclusion then applies to the cilse- R**, and therefore the
relevant bundle for the A-B effect is the produtfl)-bundle

£:U(1) > R* x U(1) » R?. (3.2)

For the more realistic case of Euclidean 3-space minus a tube, BiheeR is
also homotopically equivalent 8, the bundle is

U@) - (R®—R) x U(L) > (R®—R). (3.3)

A useful visualization of the total space of the bundle is obtained by replacing
the circle by the unit interval [0, 1] with its extreme points identified, i.ex Q.
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- -

O— T — Y

Then, the fiber bundle is
R%* x [0, 1]

~

SN — R* (3.4)

for M = R?, and
(RS— R) x [0, 1]

~

S (R®—R) (3.5)
in three dimensions.

Another picture of the total space of the bundle is that of an open solid 2-torus
minus a circle T2)* since the base spaBé* is homeomorphic to an open 2-disk
minus a point, P2)*, and T2)* = (D2)* x S'; so the bundle is

st - (Toz)* — (Dg)* (3.6)
(see Fig. 3), and in three dimensions,
S'— (T?)" xR — (D2)" x R. (3.7)

In the following, we shall restrict ourselves to a two-dimensional base space.

4. CONNECTIONS ON THE PRODUCT BUNDLE

In this section we will study the affine space of connections on a product
bundleM x G — M, and the subspace of flat connections wkkeis abelian.

Let G be a Lie group ang : P — M a principalG-bundle. We denote by
Q‘é(P; ) the real vector space &fforms g on P with values ing, the Lie algebra
of G, such that

1. Foreacla € P,ifthereis av; € (dpa)e(0), thenBa(vy, ..., Vi, ..., k) =
0, wherep, : G — P isgiven bypa(g) =a-g.
2. Foreactae P,ge G,andvi e T,P (i =1,...,k)

Bag((dyg)a(Ve), - .., (dyg)a(vi)) = Ad(g_l) o Balvy, ..., ),

whereyy : P — P is given byyy(a) =a-g.

LetC(P) be the set of connections on the bungdleP — M. One defines an
action Qg (P;g) x C(P) — C(P) by (8, w) = B = B + w. Itis easy to see
that this action is free and transitive; therefore each fixed connestiaiefines a
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bijection fromQ};(P; g) to C(P), given byB +— B + wo, so thatC(P) is an affine
space ovef2g (P; g).

Using the adjoint actiorG x g — g, we construct the associated vector
bundle p: P xg g — M, with fiber g. Let us denote by2X(M; P x¢ g) the
vector space ok-forms onM with values in the_vector bundl® xg g. It is
well known that there is an isomorphism‘g(P; g) — Q%(M; P xg g) given by
B — B,whereB, : TuM x --- x TuM — p~1(x)is defined by, (uy, . .., u) =
[, Ba(Ty), . . ., Ba(Cik)], with a any pointinp~1(x) ¢ P and; any element such
that dp)a(Gi) = u; foreachi = 1,..., k.

Now we consider the case of the product bundle,.e.P = M x G — M,
wherer is the projection on the first coordinate. In this case the associated bundle
with fiber g is also a product bundle, namédW x g — M. There is a canonical
isomorphism

(MxG)ngi)ng
N
M

given by ¢[(x, ), Z] = (x, Ad(g)(2)), whose inverse is given by~(x, z) =
[(x, €), Z]. Clearly, forms onM with values ing is the same as forms dvl with
values on the trivial bundIi x g,i.e.,Q(M;g) = Q1(M; M x g). Thus we have
the following:

Lemmal. Thereis anisomorphisf*(M;g) — Q‘é(M x G;g) given byy —
7, wherepy g) - (TxM x T4G) x - -+ x (TyM x TgG) — gis defined by

P, (U1, V), - -+, Uk, Vi) = Ad(g™Y) 0 p(ug, - . ., Uk).

And itsinverséz'é(M x G;g) — QK(M; g)isgivenbyg ,B_,Whereﬂ_X t TxM x
-+ x TyM — gis defined by

By(Us, ..., U) = Bo((Us, 0), ..., (U, 0)).

Proof: Putting together the isomorphisms defined above, weStjém; g) =
QX(M; M x g) = QX(M; (M x G) xg g) = QK(M x G;g). Itis easy to see that
their composite sendsto y, and that its inverse maggsto 3. QED

Definition 1. Let G be a Lie group. There is a canonical left invariant 1-form
M e QY(G; g) defined as follows. Since it is left invariant, it is determined by its
value ate € G, i.e., by Mg : T.G = g — g, where it is defined as the identity.
Therefore at any other poif e G, it is given by Mg(v) = (dLg-1)g(v), where
Lg1: G — Gis given byLg-1(h) = g~th.

Definition 2. Consider the product bundte: M x G — M. Using the projec-
tion on the second factoy: M x G — G and the canonical formm € Q(G; g),
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we can define a canonical 1-fog on M x G with values ing by wg := g#(M).
It is easy to see that this is a connection on the product bundle, and by definition,

wo(x,g) (U, V) = (dLg-1)g(Vv).

Lemma2. Letwr : M x G — M be the product bundle. Then there is a canon-
ical bijection QY(M;g) — C(M x G) given byy > o’, Wherew{X’g)(u, V) =
Ad(g™) o yx(u) + (dLg-1)g(V).

Proof: By Lemma 1, we have an isomorphistt(M; g) — QL (M x G;g),
y — 7. Using the canonical connectian of Definition 2, we have a bijection
QLM x G;g) —» C(M x G)givenbyp — B + wo. The composite of these gives
the desired bijectioy — w”. QED

Lemma 3. LetG(M x G) be the gauge group of the product bundle, and let
C*(M; G) be the group (under pointwise multiplication) of smooth maps from M
to G. Then C°(M; G) is isomorphic taG(M x G).

Proof: We define a homomorphism : C*°(M; G) — G(M x G) by &(f) =
o1, whereg; : M x G — M x G is given byg(f)(x, g) = (X, f(x)g). We will
show thatd is an isomorphism. Assume that(x, g) = (X, g), for all pairs &, g),
then f(x)g = g and hencef (x) = e, for all x € M. Thereforef is the neutral
element ofC>®(M; G). To see that is surjective, leth be a gauge transformation.
Define f to be the composith —> M x G -2 M x G —» G, wherey(x) =
(x, €) andq(x, g) = g. Since bothp and¢: = ®(f) areG-equivariant, we have
thato(x, g) = ¢(x,€) - g andgp¢ (X, g) = ¢+ (X, €) - g. Hence, to show that they
are equal, one only has to check that they coincide on elements of thexopen (
bute+(x, €) = (X, f(X)) = ¢(X, €). Therefored(f) = ¢. QED

Givenany principaG-bundlep : P — M, thereisanactiof(P) x G(P) —
C(P) given by @, ¢) — o - ¢ := ¢*(w).

Lemma 4. Letrm : M x G — M be a product bundle, where G is an abelian
Lie group. Then we have a commutative diagram

C(M xG)xG(M x G) — C(M x G)
=4 r
QY(M; g) x C*(M; G) — Q1(M;g),

where(y, f) >y - f =y + f#(M),forall y € Q}(M;g)and f € C*(M;G).

Proof: The vertical isomorphisms are given by Lemmas 2 and 3; therefore
we have to show thap” (w”) is equal tow’* M), Sincew” = 7 + wy, then
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¢t (@ )x0) (U, V) = yx(U) + d(L (-1 © F)x(u) + (dLg-1)g(v). Onthe other hand,
Wl (U, V) = () + FAM(U) + (dLg1)g(v). But

FAM)K(U) = Mo ((dF)x(W)) = (dL 1) ¢ (A Fx(W)).
Henceg® (w?) = ¥+ M), QED
We will now consider the curvature of the connections on the product bundle.
Lemma5. The connectiomwg on the bundler : M x G — M is flat.

Proof: It is well known that a connection is flat if and only if its distribution
of horizontal spaces is integrable. By Definitiona#yy, g,) : TxM x Tg,G — ¢

is given by wopg,go) (U, V) = (dLg-1)g(V); therefore, kewbog,g)) = {(U, 0) €
Ty, M x Ty, G}. Now for eachyy € G, consider the embedding : M — M x G
given by:ig,(x) = (X, go). Then @Lg )y, : Tx,M — T,,M x Ty, G and clearly the
image of @ Lg,)x, is the subspacgu, 0) € T,,M x Ty, G}. Therefore the horizon-
tal distribution is integrable. QED

Proposition 1. Let G be an abelian Lie group and consider the bundle
M x G — M. Then the following diagram commutes:

curvature

C(M x G) QZ(M x G;qg)
224 =
oi(M;g -5 Q%(M;g),

where the function at the top maps a connectidio its curvature P and d is the
exterior derivative.

Proof: Theisomorphismonthe leftis given by Lemma 2, and sodf Q1(M; g),
thenw” = P + wo, and, sinces is abelian,yx,q) (U, V) = yx(u). Furthermore, by
the first structural equatiorF“* = dwg + 1/2[wo, wg), SO thatF*° = dwy. By
Lemma 5,F* = 0; hencedwy = 0.

Now let us consider the image & under the |somorph|sm on the right-
hand side which is given by Lemma 1, namély’ — F“ , whereF;, (ul, up) =
F" . ((u, 0), (U2, 0)) which is equal, by the first structural equat|on to

(x,8)
dw(yx,e)((uly 0), (U2, O))
Sincew” = }’) + wo, andda)o =0, then

dw{x,e)((ula 0), (U2, 0)) = dJA/(x,e)((Ul, 0), (U2, 0)).
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But 7 (X, g)(u, v) = p(u), i.e.¥ = m¥#(y); therefore

dPe (U1, 0), Uz, 0)) = d¥(y)x.e)((Us, 0), Uz, 0))
= (r"dy)x.¢((u1, 0), (Uz, 0))
= (dy)x((dm)(x,e (U1, 0), @7)(x,e(U2, 0))
= (dy)x(ug, uy).

Hence the diagram commutes. QED

Corollary 1. Let G be an abelian Lie group angd : M x G — M a product
bundle. Thenthere is anisomorphism betweetbecycles on M with coefficients
in g and the vector space of flat connectionsmrgiven byy — w”.

Proof: We giveC(M x G) a vector space structure using the canonical bijection
of Lemma 2; in this structure the neutral elementvis Since the space of 1-
cocycles onM with coefficients ing is the kernel ofd, the result is immediate
from the commutativity of the diagram of Proposition 1. QED

Proposition 2. Let G be an abelian Lie group and: M x G — M a product
bundle. Then all flat connectioasonz are of the formy = w%", where f: M —
g is a smooth map, if and only if every homomorphism ffér(M) to R is zero.

Proof: Consider the De Rham complex with coefficientgin
QM; g) = QH(M; g) > Q¥(M;g) > -+
SinceH2(M; g) = ker(d;)/Im(do), thenH(M; g) = 0 if and only if
ker(dy) = Im(do);

and by Corollary 1, the map from kek( to the subspace of flat connections given

by y + " is an isomorphism. Bug = R™, for somem; henceH}n(M; g) =

Hir(M;R) @ - - - @ Hix(M; R). ThereforeH2;(M; g) = 0 if and only if
H3r(M;R) = 0.

By De Rahm’s theoremléR(M :R) = H(M;R), and by the Universal Coefficient
TheoremH(M;R) = Homy(H.(M; Z), R). SinceR is abelian andH1(M; Z) is
the abelianization of1;(M), we have that

Homy,(Hy(M; Z), R) = Homy(TT1(M); R). QED

Now we will study the gauge equivalence classes of flat connections on a
product bundle with abelian structural group.
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Lemma6. LetG beaconnected abelian Lie group altie Q1(G; g) its canon-
ical 1-form (see Definition 1). Thend1 = 0.

Proof: Let X,Y being; sinceM is left invariant, then
diM(X,Y) = -M[X, Y]

By Warner (1983) is abelian; hencd; M (X, Y) = 0. Now letvy, v, be inTyG,
thenv; = (dLg)e(Yi), i =1, 2, whereY; € TeG. LetY; be the left invariant vector
field generated by;, so that ¥ )g = vi. Then €1 M)g(v1, V2) = (diM)g((Y1)g,
(Y2)g) = diM(Y1, Y2)(g) = O. QED

Corollary 2. Let G be a connected abelian Lie group amd M x G — M
a product bundle. Then the actigd'(M; g) x C*(M; G) — Q(M; g) given by
y - f =y + ¥ M), leavesz}(M; g) c Q(M;g) invariant.

Proof: Let y be in QY(M;g) and f in C®°(M;g). Thendi(y - f) =di(y +
f#(M)) = di(y) + f#(dM). By Lemma 6,d;M = 0O; therefored;(y - f) =
diy. Hence)y is a cocycle if and only ify - f is a cocycle. QED

Lemma 7. Let G be a connected abelian Lie groupand M x G — M a
product bundle. Then the set of equivalence clasg¥$/;g)/C>(M;g) has a
canonical group structure.

Proof: By Corollary 2, we have an action
ZH(M;g) x C*(M; G) —~ Z%(M; g)

given by y - f =y + f#(M). Define J : C*(M;G) — 2Z%M;g) by J(f) =
f#(M). By Lemma 4, the mapy, f) — y - f = y + f#(M) is an action, thus

if fy, foareinC*®(M; G)theny - (fif)) =(y - f1)- fo,ie.y + (f1 fz)#(./\/l) =

y + f{M) + FF(M); therefore y f2)#(M) = £(M) + f#(M), which means

that J is a homomorphism. Sinc&(M;g)/C>®(M;G) = Z(M;g)/I(C>®

(M; G)) and the right-hand side is a quotient group, we obtain the canonical group
structure. QED

Definition 3. Let M be a smooth manifold an@ a Lie group. We denote by
[M, G]the set of smooth homotopy classes of smooth maps fWbto G. Given a
smooth mapf : M — G, we denote by {] its smooth homotopy class. It is easy
to check that there is a group structure &, [G], given by [f1] - [ 2] = [ f1 f2],
where (fl fz)(X) = fl(X) fz(X).

Now assume thds is a connected abelian Lie group. By Lemmdg\1 = 0,
and so we can take\(] € H3x(G; 9).
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We define: : [M, G] — H2x(M;g) by [ f] = f*[M] = [f#(M)]; this is
well defined since two smoothly homotopic maps induce the same homomorphism
in De Rham cohomology (Warner, 1983). By the proof of Lemmd7{4)*(M) =
fH M) + 1(M); therefore ([ f1] - [fa]) = «[ f1 f2] = (f2 f2)*[M] = [( f1 2)
(M)] = [F{M) + FIM)] = [FFM)] + [FIM)] = f7IM] + T IM] =
([ f1] + ([ f2]. Hencer is a homomorphism.

Definition 4. LetG be an abelian Lie groupand: M x G — M a product bun-
dle. We will define a canonical group structure on the&d x G)/G(M x G)
of gauge equivalence classes of connections dn order to do it, recall that, by
Lemma 2, we have a bijectiad’(M; g) — C(M x G) given byy > 7 + wp =
7#(y) + wo, Which can be used to define a group structur€@v x G) by set-
ting (1 + wo) * (V2 + wo) := (71 + 72) + wo, With wp as the neutral element. By
Lemma 3, each gauge transformation is of the fgrnfior a unique magd : M —
G. Using Lemma 4 it follows thap? (wo) = f#(M) + wo = 7*(F#(M)) + wo =
(f o m)*(M) 4 wo(x). Now we defingj : G(M x G) — C(M x G) by j(¢¢) :=
¢?((1)0) By Lemma 31¢f1 © ¢f2 = ¢f1 f21 by Lemma 4, ¢l fZ)#(M) = ff(M) +
ff(M); then, using £), j(¢1, 0 d1,) = j(@1,1,) = ¢F 1, (wo) = (f1f20 )"
(M) + wo = 7*((f1 1) (M) + wo = 7* (M) + 7# F(M) + wo = [( 1 0 7)*
(M) + wo] * [(f2 0 T)*(M) + wo] = j(¢+,) * j(¢+,)- Hence j is a homomor-
phism and we can form the quotient grodfpM x G)/j(G(M x G)). By defi-
nition, the equivalence relation to form this group is the followipg4"wg ~
7o + wo & there exists a smooth map: M — G such that {7 — ) + wg =
j(@1) = ¢ (o).

On the other hand, the equivalence relation to faifil x G)/G(M x G)
is given byyi + wo ~ 72 + wo < there exists a smooth majp: M — G such
thatyy + wo = ¢ (72 + wo). Now, ¢ (72 + wo) = ¢ (72) + ¢ (wo) andef (72) =
95 (*(r2)) = (m 0 ¢1)*(y2), but wog¢r =n, hence ¢7(72) = 7*(y2) = P2
Therefore, this relation ig; ™+ wo = 72 + ¢ (wo). So both equivalence relations
are the same and then we have a canonical group structure.

Theorem 2. Let G be a connected abelian Lie group and M x G — M a
product bundle. Let FIgM x G) be the vector space of flat connectionsmon
Then there is a canonical isomorphism (of groups)

His(M;9)/([M, G] —> Flat(M x G)/G(M x G)

given by[;j] — ("), where[ ] denotes the cohomology classyafthe bar de-
notes the equivalence under the actior if, G], and ( ) the gauge class of a
connection.

Proof: By Corollary 1, there is an isomorphis@*(M; g) = Flat(M x G)
given byy — o”. By Lemma 4, the action of the gauge group corresponds to
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the action ofC>*(M; G) on Z1(M; g). Then, with the group structure of Defini-
tion 4, one has an isomorphisgt(M; g)/C>®(M; G) — Flat(M x G)/G(M x
G), where, by Lemma 7.2%(M;G)/C®(M;G) = Z1(M;g)/IJ(C>*(M;G)),
which is a quotient group.

Letq : Z1(M;g) — HZr(M;g) be the quotient homomorphism, i.g(y) =
[v], and letf be inC>®(M; G). ThenqJ(f) = [f#(M)] = f*[M] = [f], i.e.,
gJ(C*®(M; G)) C ([M, G]. Thereforeq induces a homomorphism

q: Z2Y(M;g)/I(C¥(M; G)) — Hir(M;g)/iM, G]

given byqo(y) = tq(y), whereo : Z1(M;g) - Z2}(M;g)/I(C>*(M;G)) and
7 H3sr(M; ) — HEx(M;g)/([M, G] are the quotient homomorphisms.

Sinceq andr are surjectiveq o o is surjective and henagis surjective. Now
we will show that is injective. Clearlyq is injective if and only ifg =1 (([M, G]) C
J(C>*(M; G)), and so we will prove this last statement. helbe ing=2(:[M, G]),
then there exists a smooth mép M — G suchthat}] = f*(M) =[#],i.e.,y
and f #(M) represent the same cohomology clasd i (M; g), therefore there is a
smooth mag : M — gsuchthat — f#(M) = dy(¢). Consider the exponential
mapexp: g — G and define a smooth mdp: M — G by h := (expo ¢)f. In
order to evaluat&é*(M), we need to calculate the differential @pat any point
X € g. Sotake the line in g defined byx(t) = X 4 tY; then, using the fact that
is abelian, we have thakgc(t)) = exg(X + tY) = exgX)exp, (t). Hence éxpo
a)(t) = Lexgx) o eXp(t), whereexp, : R — Gisthe unique homomorphism such
that exp,(0) = Y. Therefore § expx(Y) = (expoa)(0) = (dLexyx))e(Y), and
then

expg (M)x(Y) = Mexgx ((d expx(Y))
= (d LEXKX)’l)exux) ((d Lex;:(X))e(Y)) =Y. (*)

Now, since (1 f2)*(M) £{(M) + £5 (M) (proof of Lemma 7), and using (*), we
have that h*(M)x(v) = ((expo @) F)* (M)x(v) = ¢*(exp (M))x(v) + F{(v) =
exp (M) ((do)x (V) + FHM)x(V) = (dog)x(V) + FH(M)x(V), i.e., h*(M) =
dog + f#(M).Buty = dop + f#(M), and hencg = h*(M). So, we have found
a smooth magh : M — G such thatJ(h) = h*(M) = y; thereforey e J(C*®
(M; G)) and theng~1(:[M, G]) c J(C>(M;G)), andq is injective. Finally, the
composition ofg with the isomorphism given above, mgp4g to (w?). QED

Corollary 3. Letw : M x U(1) = M be a product bundle. Then there is an
isomorphism Hs(M;R)/IHY(M;Z) — Flat(M x U(1))/G(M x U(1)).

Proof: Since the Lie algebra dff(1) isiR = R, by Theorem 2, we have an
isomorphismH3z(M; R)/([M, U(1)] — Flat(M x U(1))/G(M x U(1)).
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Let [M, U(1)]° be the group of homotopy classes of continuous maps from

M to U (1); we denote by¢]° the homotopy class of a continuous mapM —

U (1) and by [f] the smooth homotopy class of a smooth mapM — U(1).
Letp:[M,U(1)] — [M, U(1)]° be the homomorphism defined pyf] = [ f]°.
Since two smoothly homotopic maps are homotopiis,well defined. By Bocker
and &ich (1982), given any continuous map M — U (1) there is a smooth map
f : M — U(2) which is homotopic te; this implies thatp is surjective. Now let
[f] € [M, U(1)] be an element such thpff] = [ ]° = [1]°. Then there is a con-
tinuous homotopyH : M x | — U (1) such thatH(x, 0) = f(x) andH(x, 1) =

1 e U(1), forallx € M. Consider the closed subsét= M x {0} UM x {1} C
M x I,andH | A, clearly there is a neighborhotatlof Ain M x |, and a smooth
mapy : U — S such thaty | A= H | A. Then by Bocker and diich, there
is a smooth map : M x | — U(1) such thatd | A= H | A; thereforef and
1 are smoothly homotopic, i.ef| = [1], and pis injective. Hencep is an isomor-
phism. By Spanier (1989)) (1) is an Eilenberg—MacLane space of tyf#& 1),
and the homomorphismM, U (1)]° - H(M;Z) given by o[¢]® = ¢*(c) is
an isomorphism, where* : HX(U (1);Z) — H'(M;Z) andc is the canonical
generator. Thereforefliz(M;R)/([M, U(1)] = Hx(M;R)/IHY(M; Z), where
l=toploo™ QED

Now we will use these results to study the cdde= R? — {0}.

Proposition 3. Let F : R? — {0} — U (1) be the smooth map given byoE y) =
O, Y)/II(x, Y, then F(M) = i (%7 dX + 235 dy).

x24y?

Proof: A straightforward calculation shows that

2
DFx.y) = m (Xxy ;ny> .
By Definition 1, Mg(v) = (dLg-1)g(v). SinceU (1) C C, we have that\4(v) =
g~'v, where the right-hand side is the product of complex numbers. Therefore,
FAM)(X, Y)(t1, t2) = Mg,y (DF .yt t2))
(x, -y)

1 2.
= 21 yD)I2 (2 gy T XVl XYh 1)

1
= Gy A e~y 1)

-yt + Xt
- (O’ X2+ y? ) QED
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Theorem3. Letr : (R? — {0}) x U(1) — R? — {0} be the product bundle. Then
there is an isomorphism of groups Fi@&? — {0}) x U(1))/G((R? — {0})x
U(1)) > Stgiven by(w?) — €'*, where[y] = AF*(M), 1 € R.

Proof: By Theorem 2, we have an isomorphism

Har(R? — {0}; R)/([R? — {0}, U(1)] —
Flat((R? — {0}) x U(1))/G((R? — {0}) x U(1))

given by[y] ). We shall give an isomorphism between the left-hand side
andSh.

In the proof of Corollary 3, we showed th&{ — {0}, U (1)] = [R? — {0},
U(1)]° and by Spanier (1989),U[(1),U(1)]° = Z, with canonical generator
[id]. Now, U (1) is a deformation retract @2 — {0} and the magr : R2 — {0} —

U (1) of Proposition 3 is the retraction, i.e.,df. U(1) — R? — {0} is the inclu-
sion, theF o § = ldy(y andsF ~ I dg2_o), and soF is in particular a homotopy
equivalence. Therefore the homomorphidat : [U (1), U(1)]° — [R? — {0},
U(2)]° given by F[¢] = [¢ o F] is an isomorphism; henceds T[1d]° = [F]°
is a generator for §2 — {0}, U(1)] and [F] is a generator for f? — {0},
U(1)].

Consider ¢ : [R? — {0}, U(1)] — HiR(R? — {O}; ]R) and take ([F]:=
F*[M] = [F¥(M)]. By Proposition 3, F#(M) = X2+y2 dx + x2+yz dy (we
droppedthé, since here we are identifyin@® = R). Assume thatthere is asmooth
map ¢ : R? — {0} - R such thatdo¢ = F#(M). Let c(t) = (cost, sint),
0<t <m. Then, by the fundamental theorem of calculus, we would have
J.dop =0, but [, F*(M) = 7. Therefore there is no such mapand hence
[F¥(M)] = F*[M] = (F] as an element inH ng(]R2 {0}; R) is not zero.
By De Rham’s theoremt 3o (R? — {0}; R) = Hl(R {0};R), and sinceR? —

{0} ~ U(1), this group is isomorphic t¢41(U(1);R) which is isomorphic to
R (Spanier, 1989). Thereforie*[ M] is a generator oH,%R(]R2 — {0}; R). Thus,
we have

[R? — {0}, U(1)] = Z —> Hiz(R? — {O};R) = R

and any elementf] in H3,(R? — {0}; R) can be written as)[] = AF#(M). De-
fine a homomorphisnt;(R? — {0}; R) — S' by [y] = AF#(M) > €¥'*. The
homomorphism is clearly surjective, and its kernel is the image lndécause
e = 1 & 1 € Z & LF#(M) belongs to the image of Therefore we have an
isomorphismHAL(R? — (0}; R)/([R? — {0}, U(1)] — Stgivenby[y] — €%,
where ] = AF#(M). The composite of this isomorphism with the one defined
above, gives the isomorphism of the theorem. QED
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5. HOLONOMY GROUPS

In this section we will calculate the holonomy group of each gauge equiva-
lence class of flat connections thx U (1) —— M, whereM = R? — {0}. Notice
that, by the lemma below, all connections in the same gauge equivalence class have
isomorphic holonomy groups.

Definition 5. Letp: P — M be a principalG-bundlew a connection o, and
a a point in P. We denote byd,(a) c G the holonomy group ob based at the
pointa.

Lemma8. Letp: P — M beaprincipal G-bundle and;, w, two connections

on P such that they are gauge equivalent. Then, for each a in P, there exists a
g in G such that,,,(a) = g~1®,,(a)g; in particular both holonomy groups are
isomorphic.

Proof: Let ¢ be a gauge transformation such thé{w;i) = w,. Then it is easy
to see thatdg)a(H2) = Hj(a), whereH' is the horizontal subspace defined by
the connectiorw;. Let o be a piecewise smooth loop at a pokgtin M and
let ap be in p~1(xo). Then, usingy;, we define an equivariant diffeomorphism
a1 p~Y(x) — p~1(x0), and hence, an elemeg, in the gauge groug,,, (av),
given byoi(ag) = ag - 91, FOr w, we takegp(ag) in p~1(xo), and usingw,, we
have an elemerd, , such thatz(¢(ag)) = ¢(ao) - 92.-- Now, o1(ap) is obtained
by taking the uniquev;-horizontal liftings’; of o such thab3(0) = &y, and set-
ting o1(ag) = 61(1). Notice that sincpogp o6, = pody =o,thenpoagiisa
lifting of o such thaip o 51(0) = ¢(ag), and hencer(¢(ag)) = ¢ o 51(1), pro-
vided ¢ 0 &1 is wp-horizontal. Butay(t) € Hy, ), and therefored o o,)(t) =
(A9, @1() € H2;, - Sinced(p(a0)) = ¢(a) - G2, and o a(p(ac)) = ¢ o
6(1) =¢(ap- 010) = ¢(ao) - 01, and the action is free, we have tlgat, = 91 5,
i.e. ®,,(a) C ®,,(¢(a0))- Usingep~1, the same proof shows thét,,(¢(ap)) C
®,,(a). Henced,, (ag) = ®.,(¢(a0)). Sinceay and g(ap) are in p~(xo), and
the action is transitive on fibers, there igan G such thatag - g = ¢(ag). By
Kobayashi and Nomizu (1963), we have tdas,(¢(ap)) = g~1®,,(a0)g; there-
fore, @,,(a0) = g~ ®,,(20)g. QED

Theorem 4. Letr : (R? — {0}) x U(1) - R? — {0} be the product bundle. Let
(w") be the gauge equivalence class of any flat conneetioon . Thend ) is
the subgroup of Sgenerated by#&'*, where[y] = AF#(M), A € R,i.e.,®,, =
(" | ne 7).

Proof: By Theorem 3, we have an isomorphism
Flat((R? - {0}) x U(1))/G((R? - {0}) x U(1)) —> &'
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given by(w”) > €% where ] = AF*(M) is in Hiz(R? — {0}; R). We are go-

ing to calculate the holonomy of the connectioh, wherey = AF#(M). Since

[v] = [AFFM)] = A[F#(M)] = LF*(M), then(w”) — €. We take as base
point in R — {0}, the point (1, 0); and as base point in the total space, the point
((1, 0), e), wheree is the neutral element i) (1). Sincew? is a flat connec-
tion, by Kobayashi and Nomizu (1963), parallel displacement defines a surjective
homomorphism fronfl(R? — {0}, (1, 0)) to ., ((1, 0),€). By Spanier (1989),
I1,(R? — {0}, (1, 0))= Z, and we can take as a generator the cur(td = e?"'t,
wheret € [0, 1]. In order to find thew”-horizontal lifting of o, we need to de-
termine the horizontal subspacest By Lemma 2, we have thayy, y),g)(u, v) =

Yoy (U) + g7, where &,y) € R? — {0} and g € U(1). Hence, Hixy).g) =

(U, V) € Toy)(R2 = {0}) x TU(1) | g7V = =y ()} Since y = AF* (M),

we have, by Proposition 3, that

—1 . yt]_ th
Mo = {((tl' DV v=1 <x2 +y2 X2+ yz)} '

where {;, t;) € R? = Téx,y)(]R2 —{0}), g € U(1), andv is orthogonal tog. We
define o: [0, 1] = (R” — {0}) x U(1), by &(t) = (o(t), «(t)), where «(t) =
e 2" Clearlygs is a lifting of o and

&(t) — (27-” e27Tit, _27.“)\‘ e—ZJTiA)
= ((—2r sin 2tt, 27 cos 2rt), —27iA e—27ri}\t).

By the calculation above, the”-horizontal subspace at a point, (/) = it —
(cos 2rt, sin 2rt), g = e 27'* is given by

{((t1, t2), v) | (cos ZrAt, sin 2t At)v = i A(ty Sin 27t — t, cos 2rt)}

and an easy calculation shows tadt)7is in thew?” -horizontal subspace. There-
fore, sinces(0) = ((1, 0),e) ands(1) = ((1, 0),e2"*), one has that the element

of &, C S', associated to the loap is e 2**. Sincell;(R? — {0}, (1, 0))=

Z, ¥, is the subgroup generated by this element, which is the same as the
subgroup generated lg"'*. QED

Corollary 4. Letw” be any flat connection om : (R? — {0}) x U(1) —> R? —
{0}, where[y] = AF*(M). If A is rational, then its holonomy group is a finite
cyclic group. IfA is irrational, then its holonomy group is isomorphicZoand it

is dense in §

Proof: By Theorem 4, the holonomy group ef is the subgroup of' gen-
erated bye?'*_ If A is rational,» = p/q, thengax is an integer an@*'%* = 1.
Hence®,,, is finite cyclic; in particular ifx is an integer, the holonomy group is
trivial. Assume now thak is irrational; if there is a nonzero integersuch that
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e?"i"* = 1, thenni = m € Z, i.e. A is rational, which is a contradiction, and so no
such integer exists and hendg,,, = Z. By Auslander (1988), this group is dense
in St. QED

6. THE A-B CONNECTION

Although the presence of the geometrical connection discussed in the previous
section is fundamental and completely natural, it basically depends only on the
topology of the base space, because by Theorem 2 even if we take as structural
groupG = R we still have flat connections which are not gauge equivalent to the
trivial connection Higz(R%, R)/[R%, R] = R/0 = R); from the physical point
of view this is not enough. According to the discussion in Section 3, based on the
Feynman'’s path integral approach to quantum mechanics, the crucial %ctor
where® is the magnetic flux inside the solenoid, has to be considered, leading to
the Aharonov—Bohm connection

. gxdy—ydx

=—— . 6.1
2r X2+ y? 6.1)
Summing up, locally we have that
)
A= —dp, (6.2)
2
whereg € (0, 2r) is the local polar coordinate.
Defining
hc
Ay = —dog, 6.3
i (6.3)
we have

(1) [Ao] = {Ao + da},ccnrz gy IS @ generator of the cohomology B
in dimension 1, which is isomorphic @: H1(R?;R) = {A[Ao] = [AAo]}scr.
Notice that any function i€ (R?*, R) gives rise to an element &> (R?*, St),
the gauge group of the bundlthroughe — €%; howeverC>(R?*, R) does not
exhaustC>®(R%, S!) since any differentiable map : R* — S' homotopic to
€"¢ with n # 0 cannot be lifted to a map : R>* — R such thaty = €.

(ii) The moduli space of flat connections in the product buédéehe circle
if n is an integer, thenn(+ 1)Ao = Ao+ NnAy = Ao + n{¥dy = Ag + d(n )
is flat and is a gauge transform A§; then

{gauge equivalence classes [, xdy—ydx
of flat connections og} S i e

< (€01 < R/Z= S (6.4)
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In physical terms the relevant connectiorfg and one has the isomorphism

{gauge equivalence classes R«
of flat connections of} * (Aalbicoy « 7 = S, (6.5)
where
(LAl = (A Ao+ fHd ) fecn(re, 9. (6.6)

A involves quantum mechanicB)( special relativity €), electromagnetisni€|),
and differential geometrydg); therefore, it can be considered a “natural” ob-
ject associated with the plane minus a point, generating the nontrivial part of its
cohomology, ana@ll gauge nonequivalent vacuum potentials.

Finally, it is important to remark that we have two holonomies: a geometrical
holonomy and a physical holonomy, and they are related by the formula

physical holonomyQ) = geometrical holonomyg| A), (6.7)

where|e| is the absolute value of the electromagnetic coupling.

7. FINAL REMARK

When the magnetic flux is quantized in units®§, and therefore the A-B
effect vanishesA of (6.1) coincides with the asymptotic value at long distances
of the vortex solutiorto the abelian Higgs model: charged scalar electrodynam-
ics with spontaneous symmetry breaking, in which both the time independent
scalar and electromagnetic fields are defined in three-dimensional space but with
cylindrical symmetry in one direction (de Vega and Schaposnik, 1976; Nielsen and
Olesen, 1973). Inthis case, the field configurations are smooth, and no extension of
Stokes’ theorem is required, the quantization of the magnetic flux being obtained
by integrating on the circle at infinity the boundary condition on the magnetic
potential.
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