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The validity of Green’s theorem, and hence of Stokes’ theorem, when the involved
vector field is differentiable but not continuously differentiable, is crucial for a theo-
retical explanation of the Aharonov–Bohm (A-B) effect; we review this theorem. We
describe the principal bundle in which the A-B effect occurs, and give the geometrical
description of the relevant connection. We study the set of gauge equivalence classes of
flat connections on a product bundle with abelian structural group, and show that this
set has a canonical group structure, which is isomorphic to a quotient of cohomology
groups. We apply this result to the A-B bundle and calculate the holonomy groups of
all flat connections.
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1. INTRODUCTION

The Aharonov–Bohm (A-B) effect (Aharonov and Bohm, 1959) is one of the
simplest and at the same time most important examples of the interplay among
classical gauge theory, quantum mechanics, differential geometry, and topology.
This can be easily understood from the fact that the A-B effect is the result of
the action of a nontrivial flat connection (a magnetic potential) on a section (the
wave function of the electron) in a principal (product) bundle over a nonsimply
connected region (ordinary Euclidean space minus a tube). Green’s theorem in the
plane, or its three-dimensional version, the Stokes’ theorem, play a crucial role
in its theoretical explanation, relating the paths followed by the charged particles
in the free field region to the flux of the magnetic field in regions not accesible
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to the particles. The usual conditions under which the Stokes’ theorem is proved,
however, are not all fulfilled by the physical system, since in the standard proof
of the theorem it is assumed that the vector field, in this case the vector potential,
has continuous first-order partial derivatives, while in the physical system these
derivatives exist everywhere, but have a finite discontinuity at the surface of the
solenoid.

There are several proofs of the generalization of Green’s theorem, and there-
fore also of Stokes’ theorem, under different assumptions. The most appropiate for
our purposes is that of Craven (1964). For completeness, and for the benefit of the
reader, in Section 2 we present a simplified proof of the theorem, adequate to our
purposes. (In the book of Arfken and Weber, 2001, the validity of Stokes’ theorem
under these more general conditions is mentioned, but not explicitly proved.)

In Section 3 we review some geometrical aspects related to the A-B effect.
A symmetry argument allows to neglect the longitudinal dimension along the
solenoid, and then we show that the principal bundle where the effect occurs is the
productU (1)-bundleU (1)→ R2∗ ×U (1)→ R2∗, whereR2∗ = R2− {0} is the
plane minus a point (or the plane minus a disk).

Section 4 is a long section devoted to the study of the general theory of con-
nections on a product bundle, and in particular of the subspace of flat connections
in the case of a connected abelian structural groupG. Our main result (Theorem 2)
is that the moduli space of gauge equivalence classes of flat connections on the
bundleM × G→ M is isomorphic toH1

DR(M ; g)/[M, G], which is the quotient of
the first De Rham cohomology group ofM with coefficients in the Lie algebrag of
G, modulo the group of smooth homotopy classes of maps fromM to G. In partic-
ular, this shows that the A-B effect is caused by the nontrivial topology of the base
spaceM , because even ifG = R, then we still have flat connections which are not
gauge equivalent to the canonical one. For the caseG = U (1) andM = R2− {0}
we show, in Theorem 3, that the moduli space is isomorphic toS1.

In Section 5 we calculate the holonomy group of each equivalence class of
flat connections onM ×U (1)→ M , whereM = R2− {0}. By the isomorphism
mentioned above, we can associate to the gauge class of a flat connection an
element inS1. Then the holonomy group of the connection is the subgroup ofS1

generated by this element (Theorem 4). These subgroups are either finite cyclic
groups or an infinite cyclic group which is dense inS1. This means the following:
take a circle with center at the origin inR2; then there are potentials such that
if we go around this circlen times, then its holonomy is zero. And there are
potentials such that we can get as close as we want to any given value of the
holonomy phase, provided we go around the circle a sufficiently large number of
times.

In Section 6 we particularize the results of Section 4 to the A-B connection.
Finally, we comment about the appearance of the A-B field (6.1) in vortex

solutions to the abelian Higgs model.
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2. GENERALIZED GREEN’S AND STOKES’ THEOREMS

In this section we prove Green’s theorem in the plane under the less restrictive
condition of not requiring the continuity of the first-order partial derivatives of the
vector field. In so doing, we follow the proof of the Cauchy Integral Theorem by
Goursat (Churchill and Brown, 1984) in the context of complex variables.

Theorem 1. Let EA = (Ax, Ay) be a differentiable but not necessarily continu-
ously differentiable vector field inR2, andR a closed region in the plane with
boundary c, a positively oriented simple piecewise smooth closed curve. If the
Riemann integral of the difference of the partial derivatives Ay,x − Ax,y exists on
R, then this integral equals the line integral ofEA along c. In particular, the integral
exists if the set of points of discontinuity of the integrand has area zero.

Proof: Let Ax andAy be the Cartesian components of a differentiable vector field
EA inR2: by assumption all partial derivatives∂x Ay = Ay,x, etc., exist, but these are
not necessarily continuous functions of their arguments. LetR be a closed region
in thexy-plane with boundary∂R = c, a positively oriented non-self-intersecting
(simple) piecewise smooth closed curve. By a lemma of Goursat (Churchill and
Brown, 1984), whichmutatis mutandiscan be transferred from the context of com-
plex analytic functions to the present case of real-valued differentiable functions,
since it only involves the definition of the derivative, for anyε > 0 there exists a
finite subdivision ofR in closed squares and partial squares (squares with the por-
tion outsideR removed)Rα, α = 1, 2,. . . , n, with positively oriented boundaries
cα, and pointsExα ∈ Rα for eachα, such that for allEx 6= Exα inRα, the quantities

δ̄x,y = Ax − Āx

y− ȳ
− Āx,y (2.1)

and a similar definition for̄δy,x, satisfy

|δ̄x,y|, |δ̄y,x| < ε, (2.2)

where (̄x, ȳ) = Exα, (x, y) = Ex, Ax = Ax(x, y), Āx = Ax(x̄, ȳ), andĀx,y = ∂Ax
∂y |Exα .

For Ex = Exα, δ̄x,y = δ̄y,x = 0, and sōδx,y and δ̄y,x are continuous functions ofEx,
i.e., limEx→Exα Eδx,y = lim Ex→Exα Eδy,x = 0. From (2.1),

Ax = Āx + Āx,y(y− ȳ)+ δ̄x,y(y− ȳ)

Ay = Āy + Āy,x(x − x̄)+ δ̄y,x(x − x̄)

and then

Ax dx+ Ay dy = Āx dx+ Āy dy+ Āx,y(y− ȳ) dx+ Āy,x(x − x̄) dy

+ δ̄x,y(y− ȳ) dx+ δ̄y,x(x − x̄) dy;
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since ∫
cα

(Āx dx+ Āy dy) = 0

we obtain∫
cα

(Ax dx+ Ay dy) =
∫

cα

Āx,y(y− ȳ) dx+
∫

cα

Āy,x(x − x̄) dy

+
∫

cα

δ̄x,y(y− ȳ) dx+
∫

cα

δ̄y,x(x − x̄) dy.

(Whencα coincides with the boundaryc of R, each integral overcα is a sum of
integrals over its smooth components.) Since the internal integrals over elementary
contours cancel to each other, the sum over the partition for the left-hand side gives
the integral aroundc, the boundary ofR:

n∑
α=1

∫
cα

(Ax dx+ Ay dy) =
∮

c
(Ax dx+ Ay dy).

Then∣∣∣∣∣
∮

c
(Ax dx+ Ay dy)−

n∑
α=1

(
Āx,y

∫
cα

(y− ȳ) dx+ Āy,x

∫
cα

(x − x̄) dy

)∣∣∣∣∣
=
∣∣∣∣∣ n∑
α=1

(∫
cα

δ̄x,y(y− ȳ) dx+
∫

cα

δ̄y,x(x − x̄) dy

)∣∣∣∣∣
≤

n∑
α=1

(∣∣∣∣∫
cα

δ̄x,y(y− ȳ) dx

∣∣∣∣+ ∣∣∣∣∫
cα

δ̄y,x(x − x̄) dy

∣∣∣∣)

≤
n∑
α=1

(∫
cα

|δ̄x,y(y− ȳ)| dx+
∫

cα

|δ̄y,x(x − x̄)| dy

)

≤ ε
n∑
α=1

(∫
cα

|y− ȳ| dx+
∫

cα

|x − x̄| dy

)
; (2.3)

since at each square or partial square,|y− ȳ|, |x − x̄| ≤ √2sn, wheresn is the
length of the sides of thenth squares, for the integrals at the extreme right of (2.3)
we have

∫
cα
|y− ȳ| dx ≤ √2sn

∫
cα

dx ≤ 2
√

2s2
n,
∫

cα
|x − x̄| dy≤ √2sn

∫
cα

dy≤
2
√

2s2
n, and therefore this right-hand side is smaller than or equal to 4

√
2ε∑n

α=1 s2
n ≤ 4

√
2εA, whereA is the area of a rectangle which containsR. Since

this happens for allε > 0 andε→ 0 asn→∞, in this limit the extreme left side
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Fig. 1.

of (2.3) equals zero. On the other hand, on each square of sidesn,∫
cα

(y− ȳ) dx =
∫
→

(y− ȳ) dx+
∫
←

(y+ (1y)α − ȳ) dx

= (y− ȳ)(1x)α + (y+ (1y)α − ȳ)(−1x)α = −(1x)α(1y)α,∫
cα

(x − x̄) dy =
∫
↑
(x − x̄) dy+

∫
↓
(x − x̄ − (1x)α) dy

= (x − x̄)(1y)α + (x − x̄ − (1x)α)(−1y)α = (1x)α(1y)α,

where (1x)α = (1y)α = sn (see Fig. 1); and since in the limit asn→∞ the inte-
grals over partial squares can be approximated, with vanishing error, by integrals
over squares, we have∮

c
(Ax dx+ Ay dy) = lim

n→∞

n∑
α=1

(Āy,x − Āx,y)(1x)α(1y)α,

which is the definition of the Riemann integral ofAy,x − Ax,y onR. So, assuming
its existence, we obtain the Green’s theorem on the plane for the functionsAx and
Ay: ∮

c
(Ax dx+ Ay dy) =

∫
R

∫
(Ay,x − Ax,y) dx dy. (2.4)

QED

Similar Green’s formulae in the planesyz and zx can be obtained for a
differentiable butnot necessarily continuously differentiablevector field EA in R3.
From them, and through the standard procedure (Apostol, 1962; Santal´o, 1961),
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the Stokes’ theorem for the fieldEA can be proved:∮
γ

EA · dEl =
∫ ∫

6

(∇ × EA) · n̂ d6 (2.5)

where6 is a simple orientable piecewise smooth surface inR3, with unit nor-
mal vectorn̂, which can be parametrized, at each smooth piece, by continuously
differentiable functionsx = x(u, v), y = y(u, v), andz= z(u, v) in theuv-plane,
andγ , the boundary of6, is a positively oriented simple piecewise smooth closed
curve.

3. FIBER BUNDLE INTERPRETATION

The simplest explanation of the A-B effect considers a solenoid of radiusR
with a uniform and nonvanishing magnetic fieldEB in its interior, and no magnetic
field outside, placed behind a screen with a double slit. A sourceSemits electrons
which after passing the slits interferequantum mechanicallyat various pointsP
of a detecting screen (see Fig. 2). The magnetic field being the rotor of the vector
potential, clearly shows that this last quantity has a finite discontinuity in at least
one of its first partial derivatives at the surface of the solenoid.

If ψS→P is the amplitude for an electron emitted atS to be detected atP,
thenψS→P = ψ1+ ψ2, whereψk, k = 1, 2, the amplitude for the detection when
the electron follows the pathγk in the presence of the vector potentialEA creating
the magnetic field inside the solenoid, is given by

ψk = ψk0 e
iq
hc

∫
γk
EA·dEl ,

whereψk0 is the amplitude in the absence of the magnetic field, andq = −|e| is
the charge of the electron. The probability of detection is proportional to

|ψS→P|2 = |ψ1+ ψ2|2 = |ψ10|2+ |ψ20|2+ 2Re
(
ψ̄10ψ20 e

2π i |e|
hc

∮
c
EA·dEl ),

Fig. 2.
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wherec is the loopγ2 ∪ (−γ1); by the Stokes’ theorem, the interference term is

2Re
(
ψ̄10ψ20 e2π i 8

80
)
,

where8 is the magnetic flux inside the solenoid, and80 = hc
|e| is the fundamental

unit of magnetic flux associated with the electron. (80 is precisely the magnetic flux
of the elementary Dirac monopole (Dirac, 1931) associated with the electron: for
a magnetic chargeg = hc

2|e| , the magnetic field isBg(r ) = hc
2|e|r 2 , with flux through

any closed surface surroundingg given by8g =
∫

Bg dS= hc
2|e|r 2 4πr 2 = hc

|e| .)
If 8 = n80 with n ∈ Z, then there is no phase shift of the wave function of
magnetic origin, i.e. no A-B effect. It is interesting to remark that at each point
P of the detecting screen, the wave function is single valued; however, in general
ψ1 6= ψ2 (evenψ10 6= ψ20), and so it is the superposition principle which leads to
the uniqueness of the wave function.

Clearly, the system has symmetry along the axis of the solenoid, and so the
available space for the electrons, the base spaceM in the fiber bundle formalism,
is the plane minus a disk of radiusR, which is topologically equivalent toR2∗,
the plane minus a point. The classification of principal bundles over a given space
does not depend on the space itself, but only on its homotopy type, which for the
present case is that of the circle,S1. On the other hand, the structure groupG of
the bundle isU (1), the gauge group of electromagnetism, which topologically is
again the circle. So, according to the well-known theorem for the classification of
G-bundles over spheres (Steenrod, 1951),

{isomorphism classes of
U (1)-bundles overS1} ↔

{homotopy classes of
mapsS0→ S1} ↔ 50(S1)

= {path connected components of the circle} ↔ {∗}. (3.1)

Then, up to equivalence, there is only oneU (1)-bundle overS1: theproduct
one, that is, the torusT2 = S1×U (1). (If the structure group wereO(2) instead
of U (1)∼= SO(2), then there should be an additional bundle, nontrivial and non-
orientable: the Klein bottleK 2.)

The same conclusion then applies to the caseM = R2∗, and therefore the
relevant bundle for the A-B effect is the productU (1)-bundle

ξ : U (1)→ R2∗ ×U (1)→ R2∗. (3.2)

For the more realistic case of Euclidean 3-space minus a tube, sinceR3− R is
also homotopically equivalent toS1, the bundle is

U (1)→ (R3− R)×U (1)→ (R3− R). (3.3)

A useful visualization of the total space of the bundle is obtained by replacing
the circle by the unit interval [0, 1] with its extreme points identified, i.e. 0∼ 1.
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Fig. 3.

Then, the fiber bundle is

S1→ R2∗ × [0, 1]

∼ → R2∗ (3.4)

for M = R2∗, and

S1→ (R3− R)× [0, 1]

∼ → (R3− R) (3.5)

in three dimensions.
Another picture of the total space of the bundle is that of an open solid 2-torus

minus a circle (T2
o )∗ since the base spaceR2∗ is homeomorphic to an open 2-disk

minus a point, (D2
o)∗, and (T2

o )∗ = (D2
o)∗ × S1; so the bundle is

S1→ (
T2

o

)∗ → (
D2

o

)∗
(3.6)

(see Fig. 3), and in three dimensions,

S1→ (
T2

o

)∗ × R→ (
D2

o

)∗ × R. (3.7)

In the following, we shall restrict ourselves to a two-dimensional base space.

4. CONNECTIONS ON THE PRODUCT BUNDLE

In this section we will study the affine space of connections on a product
bundleM × G→ M , and the subspace of flat connections whenG is abelian.

Let G be a Lie group andp : P→ M a principalG-bundle. We denote by
Äk

G(P; g) the real vector space ofk-formsβ on P with values ing, the Lie algebra
of G, such that

1. For eacha ∈ P, if there is avi ∈ (dρa)e(g), thenβa(v1, . . . , vi , . . . , vk) =
0, whereρa : G→ P is given byρa(g) = a · g.

2. For eacha ∈ P, g ∈ G, andvi ∈ Ta P (i = 1, . . . , k)

βa·g((dγg)a(v1), . . . , (dγg)a(vk)) = Ad(g−1) ◦ βa(v1, . . . , vk),

whereγg : P→ P is given byγg(a) = a · g.
LetC(P) be the set of connections on the bundlep : P→ M . One defines an

actionÄ1
G(P; g)× C(P)→ C(P) by (β, ω) 7→ β · ω := β + ω. It is easy to see

that this action is free and transitive; therefore each fixed connectionω0 defines a
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bijection fromÄ1
G(P; g) to C(P), given byβ 7→ β + ω0, so thatC(P) is an affine

space overÄ1
G(P; g).

Using the adjoint actionG× g→ g, we construct the associated vector
bundle p̄ : P ×G g→ M , with fiber g. Let us denote byÄk(M ; P ×G g) the
vector space ofk-forms on M with values in the vector bundleP ×G g. It is
well known that there is an isomorphismÄk

G(P; g)
∼=−→ Äk(M ; P ×G g) given by

β 7→ β̃, whereβ̃x : Tx M × · · · × Tx M → p̄−1(x) is defined byβ̃x(u1, . . . , uk) =
[a, βa(ũ1), . . . , βa(ũk)], with a any point inp−1(x) ⊂ P andũi any element such
that (dp)a(ũi ) = ui for eachi = 1, . . . , k.

Now we consider the case of the product bundle, i.e.,π : P = M × G→ M ,
whereπ is the projection on the first coordinate. In this case the associated bundle
with fiber g is also a product bundle, namelyM × g→ M . There is a canonical
isomorphism

(M × G)×G g
ϕ−→ M × g

↘ ↙
M

given by ϕ[(x, g), z] = (x, Ad(g)(z)), whose inverse is given byϕ−1(x, z) =
[(x, e), z]. Clearly, forms onM with values ing is the same as forms onM with
values on the trivial bundleM × g, i.e.,Ä1(M ; g) ∼= Ä1(M ; M × g). Thus we have
the following:

Lemma 1. There is an isomorphismÄk(M ; g)→ Äk
G(M × G; g) given byγ 7→

γ̂ , whereγ̂(x,g) : (Tx M × TgG)× · · · × (Tx M × TgG)→ g is defined by

γ̂(x,g)((u1, v1), . . . , (uk, vk)) = Ad(g−1) ◦ γx(u1, . . . , uk).

And its inverseÄk
G(M × G; g)→ Äk(M ; g) is given byβ 7→ β̄, whereβ̄x : Tx M ×

· · · × Tx M → g is defined by

β̄x(u1, . . . , uk) = β(x,e)((u1, 0), . . . , (uk, 0)).

Proof: Putting together the isomorphisms defined above, we getÄk(M ; g) ∼=
Äk(M ; M × g) ∼= Äk(M ; (M × G)×G g) ∼= Äk

G(M × G; g). It is easy to see that
their composite sendsγ to γ̂ , and that its inverse mapsβ to β̄. QED

Definition 1. Let G be a Lie group. There is a canonical left invariant 1-form
M ∈ Ä1(G; g) defined as follows. Since it is left invariant, it is determined by its
value ate∈ G, i.e., byMe : TeG = g→ g, where it is defined as the identity.
Therefore at any other pointg ∈ G, it is given byMg(v) = (dLg−1)g(v), where
Lg−1 : G→ G is given byLg−1(h) = g−1h.

Definition 2. Consider the product bundleπ : M × G→ M . Using the projec-
tion on the second factorq : M × G→ G and the canonical formM ∈ Ä1(G; g),
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we can define a canonical 1-formω0 on M × G with values ing byω0 := q#(M).
It is easy to see that this is a connection on the product bundle, and by definition,
ω0(x,g)(u, v) = (dLg−1)g(v).

Lemma 2. Letπ : M × G→ M be the product bundle. Then there is a canon-
ical bijection Ä1(M ; g)→ C(M × G) given byγ 7→ ωγ , whereωγ(x,g)(u, v) =
Ad(g−1) ◦ γx(u)+ (dLg−1)g(v).

Proof: By Lemma 1, we have an isomorphismÄ1(M ; g)
∼=−→ Ä1

G(M × G; g),
γ 7→ γ̂ . Using the canonical connectionω0 of Definition 2, we have a bijection
Ä1

G(M × G; g)→ C(M × G) given byβ 7→ β + ω0. The composite of these gives
the desired bijectionγ 7→ ωγ . QED

Lemma 3. Let G(M × G) be the gauge group of the product bundle, and let
C∞(M ; G) be the group (under pointwise multiplication) of smooth maps from M
to G. Then C∞(M ; G) is isomorphic toG(M × G).

Proof: We define a homomorphism8 : C∞(M ; G)→ G(M × G) by 8( f ) =
φ f , whereφ f : M × G→ M × G is given byφ( f )(x, g) = (x, f (x)g). We will
show that8 is an isomorphism. Assume thatφ f (x, g) = (x, g), for all pairs (x, g),
then f (x)g = g and hencef (x) = e, for all x ∈ M . Therefore f is the neutral
element ofC∞(M ; G). To see that8 is surjective, letφ be a gauge transformation.
Define f to be the compositeM

ι−→ M × G
φ−→ M × G

q−→ G, whereι(x) =
(x, e) andq(x, g) = g. Since bothφ andφ f = 8( f ) areG-equivariant, we have
thatφ(x, g) = φ(x, e) · g andφ f (x, g) = φ f (x, e) · g. Hence, to show that they
are equal, one only has to check that they coincide on elements of the form (x, e),
butφ f (x, e) = (x, f (x)) = φ(x, e). Therefore8( f ) = φ. QED

Given any principalG-bundlep : P→ M , there is an actionC(P)× G(P)→
C(P) given by (ω, φ) 7→ ω · φ := φ#(ω).

Lemma 4. Let π : M × G→ M be a product bundle, where G is an abelian
Lie group. Then we have a commutative diagram

C(M × G)× G(M × G) −→ C(M × G)
∼=↑ ↑∼=

Ä1(M ; g)× C∞(M ; G) −→ Ä1(M ; g),

where(γ , f ) 7→ γ · f := γ + f #(M), for all γ ∈ Ä1(M ; g) and f ∈ C∞(M ; G).

Proof: The vertical isomorphisms are given by Lemmas 2 and 3; therefore
we have to show thatφ#

f (ω
γ ) is equal toωγ+ f #(M). Sinceωγ = γ̂ + ω0, then
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φ#
f (ω

γ )(x,g)(u, v) = γx(u)+ d(L f (x)−1 ◦ f )x(u)+ (dLg−1)g(v). On the other hand,
ω
γ+ f #(M)
(x,g) (u, v) = γx(u)+ f #(M)x(u)+ (dLg−1)g(v). But

f #(M)x(u) =M f (x)((d f )x(u)) = (dL f (x)−1

)
f (x)((d f )x(u)).

Henceφ#
f (ω

γ ) = ωγ+ f #(M). QED

We will now consider the curvature of the connections on the product bundle.

Lemma 5. The connectionω0 on the bundleπ : M × G→ M is flat.

Proof: It is well known that a connection is flat if and only if its distribution
of horizontal spaces is integrable. By Definition 2,ω0(x0,g0) : Tx0 M × Tg0G→ g
is given by ω0(x0,g0)(u, v) = (dLg−1

0
)g0(v); therefore, ker(ω0(x0,g0)) = {(u, 0) ∈

Tx0 M × Tg0G}. Now for eachg0 ∈ G, consider the embeddingιg0 : M → M × G
given byιg0(x) = (x, g0). Then (dLg0)x0 : Tx0 M → Tx0 M × Tg0G and clearly the
image of (dLg0)x0 is the subspace{(u, 0) ∈ Tx0 M × Tg0G}. Therefore the horizon-
tal distribution is integrable. QED

Proposition 1. Let G be an abelian Lie group and consider the bundleπ :
M × G→ M. Then the following diagram commutes:

C(M × G)
curvature−→ Ä2

G(M × G; g)
∼=↑ ↓∼=

Ä1(M ; g)
d−→ Ä2(M ; g),

where the function at the top maps a connectionω to its curvature Fω and d is the
exterior derivative.

Proof: The isomorphism on the left is given by Lemma 2, and so ifγ ∈ Ä1(M ; g),
thenωγ = γ̂ + ω0, and, sinceG is abelian, ˆγ(x,g)(u, v) = γx(u). Furthermore, by
the first structural equation,Fω0 = dω0+ 1/2[ω0, ω0], so that Fω0 = dω0. By
Lemma 5,Fω0 = 0; hence,dω0 = 0.

Now let us consider the image ofFωγ under the isomorphism on the right-
hand side which is given by Lemma 1, namelyFωγ 7→ F̄ωγ , whereF̄ωγ

x (u1, u2) =
Fωγ

(x,e)((u1, 0), (u2, 0)) which is equal, by the first structural equation, to

dωγ(x,e)((u1, 0), (u2, 0)).

Sinceωγ = γ̂ + ω0, anddω0 = 0, then

dωγ(x,e)((u1, 0), (u2, 0))= dγ̂(x,e)((u1, 0), (u2, 0)).
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But γ̂ (x, g)(u, v) = γx(u), i.e. γ̂ = π#(γ ); therefore

dγ̂(x,e)((u1, 0), (u2, 0))= dπ#(γ )(x,e)((u1, 0), (u2, 0))

= (π#dγ )(x,e)((u1, 0), (u2, 0))

= (dγ )x
(
(dπ )(x,e)(u1, 0), (dπ )(x,e)(u2, 0)

)
= (dγ )x(u1, u2).

Hence the diagram commutes. QED

Corollary 1. Let G be an abelian Lie group andπ : M × G→ M a product
bundle. Then there is an isomorphism between the1-cocycles on M with coefficients
in g and the vector space of flat connections onπ , given byγ 7→ ωγ .

Proof: We giveC(M × G) a vector space structure using the canonical bijection
of Lemma 2; in this structure the neutral element isω0. Since the space of 1-
cocycles onM with coefficients ing is the kernel ofd, the result is immediate
from the commutativity of the diagram of Proposition 1. QED

Proposition 2. Let G be an abelian Lie group andπ : M × G→ M a product
bundle. Then all flat connectionsω onπ are of the formω = ωd0 f , where f : M →
g is a smooth map, if and only if every homomorphism from51(M) toR is zero.

Proof: Consider the De Rham complex with coefficients ing:

Ä0(M ; g)
d0−→ Ä1(M ; g)

d1−→ Ä2(M ; g)→ · · · .
SinceH1

DR(M ; g) = ker(d1)/Im(d0), thenH1(M ; g) = 0 if and only if

ker(d1) = Im(d0);

and by Corollary 1, the map from ker(d1) to the subspace of flat connections given
by γ 7→ ωγ is an isomorphism. Butg∼= Rm, for somem; henceH1

DR(M ; g) ∼=
H1

DR(M ;R)⊕ · · · ⊕ H1
DR(M ;R). ThereforeH1

DR(M ; g) = 0 if and only if

H1
DR(M ;R) = 0.

By De Rahm’s theoremH1
DR(M ;R) ∼= H1(M ;R), and by the Universal Coefficient

TheoremH1(M ;R) ∼= HomZ(H1(M ;Z), R). SinceR is abelian andH1(M ;Z) is
the abelianization of51(M), we have that

HomZ(H1(M ;Z), R) ∼= HomZ(51(M);R). QED

Now we will study the gauge equivalence classes of flat connections on a
product bundle with abelian structural group.



P1: GFU/GCP/LOV/LCR P2: GCQ/FZN

International Journal of Theoretical Physics [ijtp] pp464-ijtp-372229 May 30, 2002 10:34 Style file version May 30th, 2002

Aharonov–Bohm Effect, Flat Connections, and Green’s Theorem 851

Lemma 6. Let G be a connected abelian Lie group andM ∈ Ä1(G; g) its canon-
ical 1-form (see Definition 1). Then d1M = 0.

Proof: Let X, Y be ing; sinceM is left invariant, then

d1M(X, Y) = −M[X, Y].

By Warner (1983)g is abelian; henced1M(X, Y) = 0. Now letv1, v2 be inTgG,
thenvi = (dLg)e(Yi ), i = 1, 2, whereYi ∈ TeG. Let Ỹi be the left invariant vector
field generated byYi , so that (̃Yi )g = vi . Then (d1M)g(v1, v2) = (d1M)g((Ỹ1)g,
(Ỹ2)g) = d1M(Ỹ1, Ỹ2)(g) = 0. QED

Corollary 2. Let G be a connected abelian Lie group andπ : M × G→ M
a product bundle. Then the actionÄ1(M ; g)× C∞(M ; G)→ Ä1(M ; g) given by
γ · f = γ + f #(M), leavesZ1(M ; g) ⊂ Ä1(M ; g) invariant.

Proof: Let γ be in Ä1(M ; g) and f in C∞(M ; g). Then d1(γ · f ) = d1(γ +
f #(M)) = d1(γ )+ f #(d1M). By Lemma 6,d1M = 0; therefored1(γ · f ) =
d1γ . Hence,γ is a cocycle if and only ifγ · f is a cocycle. QED

Lemma 7. Let G be a connected abelian Lie group andπ : M × G→ M a
product bundle. Then the set of equivalence classesZ1(M ; g)/C∞(M ; g) has a
canonical group structure.

Proof: By Corollary 2, we have an action

Z1(M ; g)× C∞(M ; G)→ Z1(M ; g)

given by γ · f = γ + f #(M). Define J : C∞(M ; G)→ Z1(M ; g) by J( f ) =
f #(M). By Lemma 4, the map (γ , f ) 7→ γ · f = γ + f #(M) is an action, thus
if f1, f2 are inC∞(M ; G) thenγ · ( f1 f2) = (γ · f1) · f2, i.e.γ + ( f1 f2)#(M) =
γ + f #

1 (M)+ f #
2 (M); therefore (f1 f2)#(M) = f #

1 (M)+ f #
2 (M), which means

that J is a homomorphism. SinceZ1(M ; g)/C∞(M ; G) = Z1(M ; g)/J(C∞

(M ; G)) and the right-hand side is a quotient group, we obtain the canonical group
structure. QED

Definition 3. Let M be a smooth manifold andG a Lie group. We denote by
[M, G] the set of smooth homotopy classes of smooth maps fromM to G. Given a
smooth mapf : M → G, we denote by [f ] its smooth homotopy class. It is easy
to check that there is a group structure on [M, G], given by [f1] · [ f2] = [ f1 f2],
where (f1 f2)(x) = f1(x) f2(x).

Now assume thatG is a connected abelian Lie group. By Lemma 6,d1M = 0,
and so we can take [M] ∈ H1

DR(G; g).
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We defineι : [M, G] → H1
DR(M ; g) by ι[ f ] = f ∗[M] = [ f #(M)]; this is

well defined since two smoothly homotopic maps induce the same homomorphism
in De Rham cohomology (Warner, 1983). By the proof of Lemma 7, (f1 f2)#(M) =
f #
1 (M)+ f #

2 (M); therefore ι([ f1] · [ f2]) = ι[ f1 f2] = ( f1 f2)∗[M] = [( f1 f2)#

(M)] = [ f #
1 (M) + f #

2 (M)] = [ f #
1 (M)] + [ f #

2 (M)] = f ∗1 [M] + f ∗2 [M] =
ι[ f1] + ι[ f2]. Henceι is a homomorphism.

Definition 4. Let G be an abelian Lie group andπ : M × G→ M a product bun-
dle. We will define a canonical group structure on the setC(M × G)/G(M × G)
of gauge equivalence classes of connections onπ . In order to do it, recall that, by
Lemma 2, we have a bijectionÄ1(M ; g)→ C(M × G) given byγ 7→ γ̂ + ω0 =
π#(γ )+ ω0, which can be used to define a group structure onC(M × G) by set-
ting (γ̂1+ ω0) ∗ (γ̂2+ ω0) := (γ̂1+ γ̂2)+ ω0, with ω0 as the neutral element. By
Lemma 3, each gauge transformation is of the formφ f for a unique mapf : M →
G. Using Lemma 4 it follows thatφ∗f (ω0) = f #(M)+ ω0 = π#( f #(M))+ ω0 =
( f ◦ π )#(M)+ ω0(∗). Now we definej : G(M × G)→ C(M × G) by j (φ f ) :=
φ#

f (ω0). By Lemma 3,φ f1 ◦ φ f2 = φ f1 f2; by Lemma 4, (f1 f2)#(M) = f #
1 (M)+

f #
2 (M); then, using (∗), j (φ f1 ◦ φ f2) = j (φ f1 f2) = φ#

f1 f2
(ω0) = ( f1 f2 ◦ π )#

(M)+ ω0 = π#(( f1 f2)#(M))+ ω0 = π# f #
1 (M)+ π# f #

2 (M)+ ω0 = [( f1 ◦ π)#

(M)+ ω0] ∗ [( f2 ◦ π )#(M)+ ω0] = j (φ f1) ∗ j (φ f2). Hence j is a homomor-
phism and we can form the quotient groupC(M × G)/j (G(M × G)). By defi-
nition, the equivalence relation to form this group is the following: ˆγ1+ ω0 ∼
γ̂2+ ω0⇔ there exists a smooth mapf : M → G such that ( ˆγ1− γ̂2)+ ω0 =
j (φ f ) := φ#

f (ω0).
On the other hand, the equivalence relation to formC(M × G)/G(M × G)

is given by ˆγ1+ ω0 ∼ γ̂2+ ω0⇔ there exists a smooth mapf : M → G such
thatγ̂1+ ω0 = φ#

f (γ̂2+ ω0). Now,φ#
f (γ̂2+ ω0) = φ#

f (γ̂2)+ φ#
f (ω0) andφ#

f (γ̂2) =
φ#

f (π
#(γ2)) = (π ◦ φ f )#(γ2), but π ◦ φ f = π , hence φ#

f (γ̂2) = π#(γ2) = γ̂2.
Therefore, this relation is ˆγ1+ ω0 = γ̂2+ φ#

f (ω0). So both equivalence relations
are the same and then we have a canonical group structure.

Theorem 2. Let G be a connected abelian Lie group andπ : M × G→ M a
product bundle. Let Flat(M × G) be the vector space of flat connections onπ .
Then there is a canonical isomorphism (of groups)

H1
DR(M ; g)/ι[M, G]

∼=−→ Flat(M × G)/G(M × G)

given by ¯[γ ] 7→ 〈ωγ 〉, where[ ] denotes the cohomology class ofγ , the bar de-
notes the equivalence under the action of[M, G], and 〈 〉 the gauge class of a
connection.

Proof: By Corollary 1, there is an isomorphismZ1(M ; g)
∼=−→ Flat(M × G)

given byγ 7→ ωγ . By Lemma 4, the action of the gauge group corresponds to
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the action ofC∞(M ; G) onZ1(M ; g). Then, with the group structure of Defini-
tion 4, one has an isomorphismZ1(M ; g)/C∞(M ; G)

∼=−→ Flat(M × G)/G(M×
G), where, by Lemma 7,Z1(M ; G)/C∞(M ; G) = Z1(M ; g)/J(C∞(M ; G)),
which is a quotient group.

Letq : Z1(M ; g)→ H1
DR(M ; g) be the quotient homomorphism, i.e.,q(γ ) =

[γ ], and let f be inC∞(M ; G). Thenq J( f ) = [ f #(M)] = f ∗[M] = ι[ f ], i.e.,
q J(C∞(M ; G)) ⊂ ι[M, G]. Thereforeq induces a homomorphism

q̄ : Z1(M ; g)/J(C∞(M ; G))→ H1
DR(M ; g)/ι[M, G]

given by q̄σ (γ ) = τq(γ ), whereσ : Z1(M ; g)→ Z1(M ; g)/J(C∞(M ; G)) and
τ : H1

DR(M ; g)→ H1
DR(M ; g)/ι[M, G] are the quotient homomorphisms.

Sinceq andτ are surjective,̄q ◦ σ is surjective and hencēq is surjective. Now
we will show thatq̄ is injective. Clearly,̄q is injective if and only ifq−1(ι[M, G]) ⊂
J(C∞(M ; G)), and so we will prove this last statement. Letγ be inq−1(ι[M, G]),
then there exists a smooth mapf : M → G such that [γ ] = f ∗(M) = [ f #], i.e.,γ
and f #(M) represent the same cohomology class inH1

DR(M ; g), therefore there is a
smooth mapϕ : M → g such thatγ − f #(M) = d0(ϕ). Consider the exponential
mapexp: g→ G and define a smooth maph : M → G by h := (exp◦ ϕ) f . In
order to evaluateh#(M), we need to calculate the differential ofexpat any point
X ∈ g. So take the lineα in g defined byα(t) = X + tY; then, using the fact thatg
is abelian, we have thatexp(α(t)) = exp(X + tY) = exp(X)expY(t). Hence (exp◦
α)(t) = Lexp(X) ◦ expY(t), whereexpY : R→ G is the unique homomorphism such
that ˙expY(0)= Y. Therefore (d exp)X(Y) = (exp◦̇α)(0)= (dLexp(X))e(Y), and
then

exp#(M)X(Y) =Mexp(X)((d exp)X(Y))

= (dLexp(X)−1

)
exp(X)

((
dLexp(X)

)
e
(Y)
) = Y. (∗)

Now, since (f1 f2)#(M) f #
1 (M)+ f #

2 (M) (proof of Lemma 7), and using (*), we
have that h#(M)x(v) = ((exp◦ ϕ) f )#(M)x(v) = ϕ#(exp#(M))x(v)+ f #

x (v) =
exp#(M)ϕ(x)((d0ϕ)x(v))+ f #(M)x(v) = (d0ϕ)x(v)+ f #(M)x(v), i.e., h#(M) =
d0ϕ + f #(M). Butγ = d0ϕ + f #(M), and henceγ = h#(M). So, we have found
a smooth maph : M → G such thatJ(h) = h#(M) = γ ; thereforeγ ∈ J(C∞

(M ; G)) and thenq−1(ι[M, G]) ⊂ J(C∞(M ; G)), andq̄ is injective. Finally, the
composition ofq̄ with the isomorphism given above, maps̄[γ ] to 〈ωγ 〉. QED

Corollary 3. Let π : M ×U (1)→ M be a product bundle. Then there is an
isomorphism H1

DR(M ;R)/ l H 1(M ;Z)
∼=−→ Flat(M ×U (1))/G(M ×U (1)).

Proof: Since the Lie algebra ofU (1) is iR ∼= R, by Theorem 2, we have an
isomorphismH1

DR(M ;R)/ι[M, U (1)]
∼=−→ Flat(M ×U (1))/G(M ×U (1)).
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Let [M, U (1)]0 be the group of homotopy classes of continuous maps from
M to U (1); we denote by [ϕ]0 the homotopy class of a continuous mapϕ : M →
U (1) and by [f ] the smooth homotopy class of a smooth mapf : M → U (1).
Let p : [M, U (1)]→ [M, U (1)]0 be the homomorphism defined byp[ f ] = [ f ]0.
Since two smoothly homotopic maps are homotopic,p is well defined. By Br¨ocker
and Jänich (1982), given any continuous mapϕ : M → U (1) there is a smooth map
f : M → U (1) which is homotopic toϕ; this implies thatp is surjective. Now let
[ f ] ∈ [M, U (1)] be an element such thatp[ f ] = [ f ]0 = [1]0. Then there is a con-
tinuous homotopyH : M × I → U (1) such thatH (x, 0)= f (x) andH (x, 1)=
1 ∈ U (1), for all x ∈ M . Consider the closed subsetA = M × {0} ∪ M × {1} ⊂
M × I , andH | A; clearly there is a neighborhoodU of A in M × I , and a smooth
mapψ : U → S1 such thatψ | A = H | A. Then by Bröcker and J¨anich, there
is a smooth mapH̃ : M × I → U (1) such thatH̃ | A = H | A; therefore f and
1 are smoothly homotopic, i.e. [f ] = [1], andp is injective. Hencep is an isomor-
phism. By Spanier (1989),U (1) is an Eilenberg–MacLane space of type (Z, 1),
and the homomorphism [M, U (1)]0

σ−→ H1(M ;Z) given by σ [ϕ]0 = ϕ∗(c) is
an isomorphism, whereϕ∗ : H1(U (1);Z)→ H1(M ;Z) and c is the canonical
generator. Therefore,H1

DR(M ;R)/ι[M, U (1)] ∼= H1
DR(M ;R)/ l H 1(M ;Z), where

l = ι ◦ p−1 ◦ σ−1. QED

Now we will use these results to study the caseM = R2− {0}.

Proposition 3. Let F : R2− {0} → U (1)be the smooth map given by F(x, y) =
(x, y)/‖(x, y)‖, then F#(M) = i ( −y

x2+y2 dx+ x
x2+y2 dy).

Proof: A straightforward calculation shows that

DF(x,y) = 1

(x2+ y2)3/2

(
y2 −xy
−xy x2

)
.

By Definition 1,Mg(v) = (dLg−1)g(v). SinceU (1)⊂ C, we have thatMg(v) =
g−1v, where the right-hand side is the product of complex numbers. Therefore,

F#(M)(x, y)(t1, t2) =MF(x,y)
(
DF(x,y)(t1, t2)

)
= (x,−y)

(x2+ y2)1/2

1

(x2+ y2)3/2
(y2t1− xyt2,−xyt1+ t2x)

= 1

(x2+ y2)2
(x,−y)(y2t1− xyt2,− xyt1+ t2x2)

=
(

0,
−yt1+ xt2

x2+ y2

)
. QED
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Theorem 3. Letπ : (R2− {0})×U (1)→ R2− {0}be the product bundle. Then
there is an isomorphism of groups Flat((R2− {0})×U (1))/G((R2− {0})×
U (1))

∼=→ S1 given by〈ωγ 〉 7→ e2π iλ, where[γ ] = λF∗(M), λ ∈ R.

Proof: By Theorem 2, we have an isomorphism

H1
DR(R2− {0};R)/ι[R2− {0}, U (1)]→

Flat((R2− {0})×U (1))/G((R2− {0})×U (1))

given by ¯[γ ] 7→ 〈ωγ 〉. We shall give an isomorphism between the left-hand side
andS1.

In the proof of Corollary 3, we showed that [R2− {0}, U (1)] ∼= [R2− {0},
U (1)]0 and by Spanier (1989), [U (1), U (1)]0 ∼= Z, with canonical generator
[id]. Now, U (1) is a deformation retract ofR2− {0} and the mapF : R2− {0} →
U (1) of Proposition 3 is the retraction, i.e., ifδ : U (1)→ R2− {0} is the inclu-
sion, theF ◦ δ = I dU (1) andδ0F ' I dR2−{0}, and soF is in particular a homotopy
equivalence. Therefore the homomorphismF+ : [U (1), U (1)]0→ [R2− {0},
U (1)]0 given by F+[ϕ] = [ϕ ◦ F ] is an isomorphism; hence,F+[ I d]0 = [F ]0

is a generator for [R2− {0}, U (1)] and [F ] is a generator for [R2− {0},
U (1)].

Consider ι : [R2− {0}, U (1)]→ H1
DR(R2− {0};R) and take ι[F ] :=

F∗[M] = [F#(M)]. By Proposition 3, F#(M) = −y
x2+y2 dx+ x

x2+y2 dy (we
dropped thei , since here we are identifyingiR ∼= R). Assume that there is a smooth
map ϕ : R2− {0} → R such that d ◦ ϕ = F#(M). Let c(t) = (cost, sint),
0≤ t ≤ π . Then, by the fundamental theorem of calculus, we would have∫

c d0ϕ = 0, but
∫

c F#(M) = π . Therefore there is no such mapϕ and hence
[F#(M)] = F∗[M] = ι[F ] as an element inH1

DR(R2− {0};R) is not zero.
By De Rham’s theorem,H1

DR(R2− {0};R) ∼= H1(R2− {0};R), and sinceR2−
{0} ' U (1), this group is isomorphic toH1(U (1);R) which is isomorphic to
R (Spanier, 1989). ThereforeF∗[M] is a generator ofH1

DR(R2− {0};R). Thus,
we have

[R2− {0}, U (1)] ∼= Z ι−→ H1
DR(R2− {0};R) ∼= R,

and any element [γ ] in H1
DR(R2− {0};R) can be written as [γ ] = λF#(M). De-

fine a homomorphismH1
DR(R2− {0};R)→ S1 by [γ ] = λF#(M) 7→ e2π iλ. The

homomorphism is clearly surjective, and its kernel is the image ofι because
e2π iλ = 1⇔ λ ∈ Z⇔ λF#(M) belongs to the image ofι. Therefore we have an
isomorphismH1

DR(R2− {0};R)/ι[R2− {0}, U (1)]
∼=−→ S1 given by ¯[γ ] 7→ e2π iλ,

where [γ ] = λF#(M). The composite of this isomorphism with the one defined
above, gives the isomorphism of the theorem. QED
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5. HOLONOMY GROUPS

In this section we will calculate the holonomy group of each gauge equiva-
lence class of flat connections onM ×U (1)

π−→ M , whereM = R2− {0}. Notice
that, by the lemma below, all connections in the same gauge equivalence class have
isomorphic holonomy groups.

Definition 5. Let p : P→ M be a principalG-bundle,ω a connection onP, and
a a point in P. We denote by8ω(a) ⊂ G the holonomy group ofω based at the
pointa.

Lemma 8. Let p : P→ M be a principal G-bundle andω1,ω2 two connections
on P such that they are gauge equivalent. Then, for each a in P, there exists a
g in G such that8ω1(a) = g−18ω2(a)g; in particular both holonomy groups are
isomorphic.

Proof: Let ϕ be a gauge transformation such thatϕ∗(ω1) = ω2. Then it is easy
to see that (dϕ)a(H1

a ) = H2
ϕ(a), whereHi is the horizontal subspace defined by

the connectionωi . Let σ be a piecewise smooth loop at a pointx0 in M and
let a0 be in p−1(x0). Then, usingω1, we define an equivariant diffeomorphism
σ̄ 1 : p−1(x0)→ p−1(x0), and hence, an elementg1,σ in the gauge group8ω1(a0),
given by σ̄ 1(a0) = a0 · g1,σ . Forω2 we takeϕ(a0) in p−1(x0), and usingω2, we
have an elementg2,σ such that ¯σ 2(ϕ(a0)) = ϕ(a0) · g2,σ . Now, σ̄ 1(a0) is obtained
by taking the uniqueω1-horizontal lifting σ̃ 1 of σ such that ˜σ 1(0)= a0, and set-
ting σ̄ 1(a0) = σ̃ 1(1). Notice that sincep ◦ ϕ ◦ σ̃ 1 = p ◦ σ̃ 1 = σ , thenϕ ◦ σ̃ 1 is a
lifting of σ such thatϕ ◦ σ̃ 1(0)= ϕ(a0), and hence ¯σ 2(ϕ(a0)) = ϕ ◦ σ̃ 1(1), pro-
vided ϕ ◦ σ̃ 1 is ω2-horizontal. But ˜σ

·
1(t) ∈ H1

σ̃ 1(t), and therefore (ϕ ◦ σ̃· 1)(t) =
(dϕ)σ̃ 1(t)(σ̃ 1(t)) ∈ H2

ϕ◦σ̃1(t). Since σ̄ 2(ϕ(a0)) = ϕ(a0) · g2,σ and σ̄ 2(ϕ(a0)) = ϕ ◦
σ̃ (1)= ϕ(a0 · g1,σ ) = ϕ(a0) · g1,σ , and the action is free, we have thatg2,σ = g1,σ ,
i.e.8ω1(a0) ⊂ 8ω2(ϕ(a0)). Usingϕ−1, the same proof shows that8ω2(ϕ(a0)) ⊂
8ω1(a0). Hence8ω1(a0) = 8ω2(ϕ(a0)). Sincea0 andϕ(a0) are in p−1(x0), and
the action is transitive on fibers, there is ag in G such thata0 · g = ϕ(a0). By
Kobayashi and Nomizu (1963), we have that8ω2(ϕ(a0)) = g−18ω2(a0)g; there-
fore,8ω1(a0) = g−18ω2(a0)g. QED

Theorem 4. Letπ : (R2− {0})×U (1)→ R2− {0} be the product bundle. Let
〈ωγ 〉 be the gauge equivalence class of any flat connectionωγ onπ . Then8〈ωγ 〉 is
the subgroup of S1 generated by e2π iλ, where[γ ] = λF#(M), λ ∈ R, i.e.,8〈ωγ 〉 =
{e2π inλ | n ∈ Z}.

Proof: By Theorem 3, we have an isomorphism

Flat((R2− {0})×U (1))/G((R2− {0})×U (1))
∼=−→ S1
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given by〈ωγ 〉 7→ e2π iλ, where [γ ] = λF∗(M) is in H1
DR(R2− {0};R). We are go-

ing to calculate the holonomy of the connectionωγ , whereγ = λF#(M). Since
[γ ] = [λF#(M)] = λ[F#(M)] = λF∗(M), then〈ωγ 〉 7→ e2π iλ. We take as base
point inR2− {0}, the point (1, 0); and as base point in the total space, the point
((1, 0), e), wheree is the neutral element inU (1). Sinceωγ is a flat connec-
tion, by Kobayashi and Nomizu (1963), parallel displacement defines a surjective
homomorphism from51(R2− {0}, (1, 0)) to8ωγ ((1, 0),e). By Spanier (1989),
51(R2− {0}, (1, 0))∼= Z, and we can take as a generator the curveσ (t) = e2π i t ,
wheret ∈ [0, 1]. In order to find theωγ -horizontal lifting ofσ , we need to de-
termine the horizontal subspaces ofωγ . By Lemma 2, we have thatω((x,y),g)(u, v) =
γ(x,y)(u)+ g−1v, where (x, y) ∈ R2− {0} and g ∈ U (1). Hence, H((x,y),g) =
{(u, v) ∈ T(x,y)(R2− {0})× TgU (1) | g−1v = −γ(x,y)(u)}. Since γ = λF#(M),
we have, by Proposition 3, that

H((x,y),g) =
{

((t1, t2), v) | g−1v = iλ

(
yt1

x2+ y2
− xt2

x2+ y2

)}
,

where (t1, t2) ∈ R2 = T(x,y)(R2− {0}), g ∈ U (1), andv is orthogonal tog. We
define σ̃ : [0, 1]→ (R2− {0})×U (1), by σ̃ (t) = (σ (t), α(t)), where α(t) =
e−2π iλt . Clearlyσ̃ is a lifting of σ and

σ̃
·
(t) = (2π i e2π i t ,−2π iλ e−2π iλ)

= ((−2π sin 2π t, 2π cos 2π t),−2π iλ e−2π iλt ).

By the calculation above, theωγ -horizontal subspace at a point (x, y) = e2π i t =
(cos 2π t, sin 2π t), g = e−2π iλ is given by

{((t1, t2), v) | (cos 2πλt, sin 2πλt)v = iλ(t1 sin 2π t − t2 cos 2π t)}
and an easy calculation shows that ˜σ

·
(t) is in theωγ -horizontal subspace. There-

fore, since ˜σ (0)= ((1, 0),e) andσ̃ (1)= ((1, 0),e−2π iλ), one has that the element
of 8〈ωγ 〉 ⊂ S1, associated to the loopσ is e−2π iλ. Since51(R2− {0}, (1, 0))∼=
Z,8〈ωγ 〉 is the subgroup generated by this element, which is the same as the
subgroup generated bye2π iλ. QED

Corollary 4. Letωγ be any flat connection onπ : (R2− {0})×U (1)→ R2−
{0}, where[γ ] = λF∗(M). If λ is rational, then its holonomy group is a finite
cyclic group. Ifλ is irrational, then its holonomy group is isomorphic toZ and it
is dense in S1.

Proof: By Theorem 4, the holonomy group ofωγ is the subgroup ofS1 gen-
erated bye2π iλ. If λ is rational,λ = p/q, thenqλ is an integer ande2π iqλ = 1.
Hence8〈ωγ 〉 is finite cyclic; in particular ifλ is an integer, the holonomy group is
trivial. Assume now thatλ is irrational; if there is a nonzero integern such that
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e2π inλ = 1, thennλ = m ∈ Z, i.e.λ is rational, which is a contradiction, and so no
such integer exists and hence8〈ωγ 〉 ∼= Z. By Auslander (1988), this group is dense
in S1. QED

6. THE A-B CONNECTION

Although the presence of the geometrical connection discussed in the previous
section is fundamental and completely natural, it basically depends only on the
topology of the base space, because by Theorem 2 even if we take as structural
groupG = R we still have flat connections which are not gauge equivalent to the
trivial connection (H1

DR(R2∗, R)/[R2∗, R] ∼= R/0∼= R); from the physical point
of view this is not enough. According to the discussion in Section 3, based on the
Feynman’s path integral approach to quantum mechanics, the crucial factor8

2π ,
where8 is the magnetic flux inside the solenoid, has to be considered, leading to
theAharonov–Bohm connection

A = 8

2π

x dy− y dx

x2+ y2
. (6.1)

Summing up, locally we have that

A = 8

2π
dϕ, (6.2)

whereϕ ∈ (0, 2π ) is the local polar coordinate.
Defining

A0 = hc

|e|dϕ, (6.3)

we have
(i) [ A0] = {A0+ dα}α∈C∞(R2∗,R) is a generator of the cohomology ofR2∗

in dimension 1, which is isomorphic toR: H1(R2∗;R) ∼= {λ[ A0] = [λA0]}λ∈R.
Notice that any function inC∞(R2∗, R) gives rise to an element ofC∞(R2∗, S1),
the gauge group of the bundle, throughα 7→ eiα; howeverC∞(R2∗, R) does not
exhaustC∞(R2∗, S1) since any differentiable mapγ : R2∗ → S1 homotopic to
einϕ with n 6= 0 cannot be lifted to a mapα : R2∗ → R such thatγ = eiα.

(ii) The moduli space of flat connections in the product bundleξ is the circle:
if n is an integer, then (n+ 1)A0 = A0+ n A0 = A0+ n hc

|e| dϕ = A0+ d(n hc
|e| ϕ)

is flat and is a gauge transform ofA0; then

{gauge equivalence classes
of flat connections onξ} ↔

{
λ

x dy− y dx

x2+ y2

}
λ∈(0,1)

↔ {e2π iλ}λ∈(0,1)↔ R/Z ∼= S1. (6.4)
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In physical terms the relevant connection isA0, and one has the isomorphism

{gauge equivalence classes
of flat connections onξ} ↔ {[λA0]}λ∈(0,1)↔ R

Z
∼= S1, (6.5)

where

[λA0] = {λA0+ f −1d f } f ∈C∞(R2∗,S1). (6.6)

A0 involves quantum mechanics (h), special relativity (c), electromagnetism (|e|),
and differential geometry (dϕ); therefore, it can be considered a “natural” ob-
ject associated with the plane minus a point, generating the nontrivial part of its
cohomology, andall gauge nonequivalent vacuum potentials.

Finally, it is important to remark that we have two holonomies: a geometrical
holonomy and a physical holonomy, and they are related by the formula

physical holonomy(A) = geometrical holonomy(|e|A), (6.7)

where|e| is the absolute value of the electromagnetic coupling.

7. FINAL REMARK

When the magnetic flux is quantized in units of80, and therefore the A-B
effect vanishes,A of (6.1) coincides with the asymptotic value at long distances
of thevortex solutionto the abelian Higgs model: charged scalar electrodynam-
ics with spontaneous symmetry breaking, in which both the time independent
scalar and electromagnetic fields are defined in three-dimensional space but with
cylindrical symmetry in one direction (de Vega and Schaposnik, 1976; Nielsen and
Olesen, 1973). In this case, the field configurations are smooth, and no extension of
Stokes’ theorem is required, the quantization of the magnetic flux being obtained
by integrating on the circle at infinity the boundary condition on the magnetic
potential.
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